
SUGGESTED SOLUTION TO PROBLEM 12

OSKAR HENRIKSSON

This is a suggested solution for Problem 12. If you find something that looks like a typo or error (or if
you have questions, or want additional feedback on an attempted solution), feel free to email me.

Claim: Let (X, d) be a metric space, let A ⊆ X be a closed subset, and let B ⊆ X be a compact
subset. Also let D ..= {d(x, y) : x ∈ A, y ∈ B}. Then it holds that

A ∩B 6= ∅ ⇐⇒ inf(D) = 0 .

Proof. “⇒”: Suppose that A∩B 6= ∅. Then there exists some z ∈ A∩B, and we get that 0 = d(z, z) ∈ D,
from which it follows that inf(D) ≤ 0. At the same time, the definition of a metric (see Definition 1.1
in the script) gives that all elements in D are nonnegative, so inf(D) ≥ 0. Hence, we conclude that
inf(D) = 0.

“⇐”: Suppose that inf(D) = 0. Then, for any n ∈ N, we can find xn ∈ A and yn ∈ B such that
d(xn, yn) < 1/n. This gives a sequence (yn)∞

n=1 of elements in B. Since B (with the restriction of d) is
a metric space, compactness implies sequential compactness (see Theorem 10.5 in the script). Hence,
there is a subsequence (ynk

)∞
k=1 (for some n1 < n2 < n3 < · · · in N) that converges to some y ∈ B.

For each k ∈ N, the triangle inequality now gives that
0 ≤ d(xnk

, y) ≤ d(xnk
, ynk

) + d(ynk
, y) .

Since both terms of the right-hand side go to 0 as k →∞, the “squeezing theorem” from calculus gives
that d(xnk

, y)→ 0 as k →∞, and we conclude that (xnk
)∞
k=1 converges to y. This implies that y ∈ A,

but since A is closed, A = A, and we conclude that y ∈ A. Hence, we have y ∈ A ∩ B, which shows
that A ∩B 6= ∅. �

Alternative proof of “⇐”. We prove this by contraposition. Suppose A ∩B = ∅. Then, for any y ∈ B,
it holds that y ∈ X A. Note that X A is open in X, since A is closed. Hence, we can find some
εy > 0 such that Bεy (y) ⊆ X A.

Key observation: We have an open covering {Bεy/2(y) : y ∈ B} of B, and by compactness of B, we can
find a finite subcovering, i.e. there exists some n ∈ N and y1, . . . , yn ∈ B such that

B ⊆
n⋃

i=1
Bεyi

/2(yi) . (1)

Let ε ..= min{εy1 , . . . , εyn
}. Since it’s the minimum of finitely many positive numbers, we have ε > 0.

Remark: Note that we have divided the radii by 2. This is a trick that we use to get a strictly positive
bound in the estimation (2) later in the proof.

Now let x ∈ A and y ∈ B be arbitrary. Then (1) gives there exists some i ∈ {1, . . . , n} such that
y ∈ Bεyi

/2(yi). By the triangle inequality, it holds that

d(x, y) ≥ d(x, yi)− d(y, yi) > εyi −
εyi

2 = εyi

2 ≥
ε

2 , (2)

where the strict inequality sign follows from the following two observations:

• By assumption, Bεyi
(yi) ⊆ X A, so x 6∈ Bεyi

(yi), which implies that d(x, yi) ≥ εyi
.

• By assumption, y ∈ Bεyi
(yi), so it holds that d(y, yi) < εyi .

(It’s a good idea to draw a picture of this in R2 to help your intuition!)

Put differently, the estimation in (2) shows that ε/2 is a lower bound of D, from which it follows that
inf(D) ≥ ε/2 > 0. In particular, inf(D) 6= 0, which is what we wanted to show! �
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