SUGGESTED SOLUTION TO PROBLEM 11

OSKAR HENRIKSSON

This is a suggested solution for Problem 11. If you find something that looks like a typo or error (or if you have questions, or want additional feedback on an attempted solution), feel free to email me.

Let \mathbb{R}^n be equipped with the standard topology, let $\|\cdot\|$ be the Euclidean norm, and let ∼ be the equivalence relation on \mathbb{R}^n defined by setting $x \sim y$ if and only if $||x|| = ||y||$.

Claim 1: \mathbb{R}^n/\sim (with the quotient topology) is homeomorphic to $[0, \infty)$.

Proof. Consider the map

$$
f: \mathbb{R}^n \to [0, \infty), \quad x \mapsto ||x||.
$$

We know that this map is continuous from analysis (but it's also pretty easy to check that $f^{-1}((a, b)) \subseteq \mathbb{R}^n$ and $f^{-1}([0, b)) \subseteq \mathbb{R}^n$ are open for all $0 \leq a \leq b$). Since *f* is constant on equivalence classes, the *universal property of quotient spaces* (Proposition 7.12 in the script, see also the end of these notes) gives that it induces a continuous map $\varphi: \mathbb{R}^n/\sim \to [0, \infty)$ given by $\varphi([x]) = f(x) = ||x||$.

Sidenote for those who are interested: In fancy category-theoretic language, one can say that φ makes the following diagram commute:

$$
\mathbb{R}^n \xrightarrow{f} [0, \infty)
$$

q

$$
\downarrow \qquad \qquad \downarrow
$$

$$
\mathbb{R}^n/\sim
$$

where $q: \mathbb{R}^n \to \mathbb{R}^n/\sim$ is the quotient map defined by $q(x) = [x]$.

We now claim that φ is a homeomorphism. We show this by constructing a continuous inverse. Consider the map

$$
g: [0, \infty) \to \mathbb{R}^n
$$
, $g(t) = (t, 0, \dots, 0)$.

This is a continuous map, which we again can argue for by either referring to analysis, or by checking that $g^{-1}(B_r(x)) \subseteq \mathbb{R}^n$ is open for all $r > 0$ and $x \in \mathbb{R}^n$. Form the composition $\psi = q \circ g$, given by $\psi(t) = [(t, 0, \ldots, 0)]$. Note that ψ is continuous since it's the composition of two continuous maps.

With fancy language, one can say that it makes the following diagram commute:

$$
\mathbb{R}^{n} \xleftarrow{g} [0, \infty).
$$

$$
\downarrow \qquad \down
$$

It now holds that

$$
\varphi(\psi(t)) = \varphi([(t, 0, \dots, 0)]) = ||(t, 0, \dots, 0)|| = t \text{ for } t \in [0, \infty),
$$

$$
\psi(\varphi([x])) = \psi(||x||) = [(||x||, 0, \dots, 0)] = [x] \text{ for } x \in \mathbb{R}^n,
$$

where the last equality holds since $||(x||, 0, \ldots, 0)|| = ||x||$. This shows that ψ is the inverse of φ .

Claim 2: $[0, \infty)$ is homeomorphic to $[0, 1)$.

Proof. Simply note that the map

$$
\alpha\colon [0,\infty)\to [0,1)\,,\quad t\mapsto \frac{t}{t+1}\,,
$$

is continuous (we know from analysis that rational functions are continuous) and invertible, with continuous inverse

$$
\beta\colon [0,1)\to [0,\infty), \quad s\mapsto \frac{s}{1-s}.
$$

Main claim: \mathbb{R}^n/\sim is homeomorphic to [0,1].

Proof. This follows from Claim 1 and Claim 2, combined with the fact that being homeomorphic is a transitive relation for topological spaces (see Remark 6.5 in the script). More specifically, the composition $\alpha \circ \varphi : \mathbb{R}^n/\sim \rightarrow [0,1)$ will be a homeomorphism, with continuous inverse $\psi \circ \beta : [0,1) \rightarrow \mathbb{R}^n/\sim$

$$
\mathbb{R}^n/\sim \frac{\varphi}{\longleftrightarrow} [0,\infty) \xrightarrow{\alpha} [0,1).
$$

The universal property of quotient spaces (special case of Proposition 7.12)**.** Let *X* and *Z* be topological spaces, let \sim be an equivalence relation on *X*, let *X*/ \sim be equipped with the quotient topology, and let $q: X \to X/\sim$ be the quotient map defined by $q(x) = [x]$. Let $f: X \to Z$ be a continuous map that is constant on equivalence classes, in the sense that $z_1 \sim z_2$ implies $f(z_1) = f(z_2)$. Then there is a unique continuous map $\varphi: X/\sim \to Z$ such that $\varphi([x]) = f(x)$ for all $x \in X$, or put differently, that makes the following diagram commute:

$$
X \xrightarrow{f} Z.
$$

\n
$$
X \downarrow \searrow \searrow \searrow Z.
$$

\n
$$
X/\sim
$$

LATEX advice. To get the spacing in X/\sim right, you should write $X/\{\sinh}$, rather than X/\sin .