
SUPPLEMENTAL NOTES ON THE EXTENSION THEOREM

In many cases, the following reformulation of the extension theorem is a bit simpler to use in
practice than the one given in the course literature and lecture notes.

Theorem 0.1 (The extension theorem, reformulated). Let I ⊆ C[t1, . . . , tn] be an ideal, let
I1 = I ∩ C[t2, . . . , tn], and let (a2, . . . , an) ∈ V(I1). Suppose there exists a polynomial f ∈ I of
the form

f = c(t2, . . . , tn)t
N
1 + [terms with lower degree in t1],

such that c(a2, . . . , an) ̸= 0. Then there exists an a1 ∈ C such that (a1, an, . . . , an) ∈ V(I).

Exercise: Prove this is equivalent to the version of the extension theorem stated in the notes.

This has two important consequences that we will use in the exercise sessions. Make sure you
understand how they follow from the extension theorem.

Corollary 0.2. Let I ⊆ C[t1, . . . , tn] be an ideal, and let I1 = I ∩ C[t2, . . . , tn]. Suppose there
exists a polynomial f ∈ I of the form

f = c(t2, . . . , tn)t
N
1 + [terms with lower degree in t1]

such that c(t2, . . . , tn) is a nonzero constant. Then for any point (a2, . . . , an) ∈ V(I1) there exists
an a1 ∈ C such that (a1, a2, . . . , an) ∈ V(I). In other words, the projection π : V(I) → V(I1) is
surjective.

Corollary 0.3 (The “free extension lemma”). Let I ⊆ C[t1, . . . , tn] be an ideal, and let I1 =
I ∩ C[t2, . . . , tn]. Suppose that I admits a generating set only involving the variables t2, . . . , tn.
Then for any point (a2, . . . , an) ∈ V(I1) and any a1 ∈ C, it holds that (a1, a2, . . . , an) ∈ V(I).
In other words, V(I) = C× V(I1). In particular, the projection π : V(I) → V(I1) is surjective.

The results above are formulated in the setting where one has eliminated only one variable, but
by extending one variable at a time, one can apply these techniques also when one has eliminated
any number of variables. Let us now make this precise.

Suppose that we have an ideal I ⊆ C[x1, . . . , xm, y1, . . . , yn] with elimination ideal Im = I ∩
C[y1, . . . , yn], and want to decide whether a certain point (b1, . . . , bn) ∈ V(Im) can be extended,
in the sense that there exists some a1, . . . , am ∈ C such that (a1, . . . , am, b1, . . . , bn) ∈ V(I).

We will apply the tools described above step-wise, by considering the following sequence of
intermediate elimination ideals:

• I1 = I ∩ C[x2, . . . , xm, y1, . . . , yn]

• I2 = I ∩ C[x3, . . . , xm, y1, . . . , yn]

• I3 = I ∩ C[x4, . . . , xm, y1, . . . , yn]

• ...

• Im−2 = I ∩ C[xm−1, xm, y1, . . . , yn]

• Im−1 = I ∩ C[xm, y1, . . . , yn]

• Im = I ∩ C[y1, . . . , yn]

and the projections

V(I) −→ V(I1) −→ V(I2) −→ V(I3) −→ · · · −→ V(Im−1) −→ V(Im)

(x1, x2, x3, . . . , xm, y1, . . . , yn) 7→ (x2, x3 . . . , xm, y1, . . . , yn) 7→ · · · 7→ (xm, y1, . . . , yn) 7→ (y1, . . . , yn) .

To prove that (b1, . . . , bn) can be extended, the idea is to start from the end of this sequence,
and step-by-step prove that we can find a sequence of coordinates am, am−1, . . . , a2, a1 ∈ C such
that (a1, . . . , am, b1, . . . , bn) ∈ V(I).
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2 SUPPLEMENTAL NOTES ON THE EXTENSION THEOREM

Application: Proving surjectivity. Suppose we have a polynomial map

F = (f1, . . . , fn) : Cm → Cn,

and want to investigate whether it is surjective. We can do this by combining the implicitization
and extension theorems, in the following three main steps:

(1) Check what the smallest variety containing the image is.

(2) Try to lift points in this variety with extension.

(3) Analyze special cases where the extension fails by repeating step 1 and 2.

The first step is to form the ideal

I :=
〈
y1 − f1(x1, . . . , xm), . . . , yn − f1(x1, . . . , xm)

〉
⊆ C[x1, . . . , xm, y1, . . . , yn]

which has the property that V(I) ⊆ Cm × Cn is the graph of F .

The image of F is then the image πm(V(I)) ⊆ Cn under the canonical projection πm : Cm×Cn →
Cn. The implicitization theorem is telling us that the smallest variety containing πm(V(I)) is
V(Im), where Im = I ∩ C[y1, . . . , yn] is the m-th elimination ideal.

By the elimination theorem, we can compute a Gröbner basis Gm for Im by computing a Gröbner
basis G of I with respect to the lexicographic ordering x1 > · · · > xm > y1 > · · · ym, and then
setting Gm = G ∩ C[y1, . . . , yn]. This gives rise to the following condition:

Necessary condition for surjectivity: If F : Cm → Cn is surjective, then Im = ⟨0⟩.

If this condition is not satisfied, then we can immediately rule out surjectivity.

Note that this condition is not sufficient for surjectivity; a simple counterexample is given by
F (x1, x2) = (x1, x1x2) (make sure you understand this!). Therefore, if the condition is satisfied,
we move on, and try to prove surjectivity by the extension theorem. More specifically, we
try to apply the tools outlined in the first part of this document to an arbitrary fixed point
(b1, . . . , bn) ∈ Cn. If this succeeds, we conclude that F is surjective.

Note: It might happen along the way that we don’t find any polynomials that satisfy the
assumption in the extension theorem or our “free extension lemma”. It’s important to note that
this does not necessarily imply that F is non-surjective.

Instead, we should investigate more closely the points (b1, . . . , bn) for which the extension criteria
fail, and try to manually prove that they either can or cannot be extended. (We can also try to
change the monomial ordering in the hope of making it easier to apply the extension theorem.)


	Application: Proving surjectivity

