
Computations over Q vs. C
A slightly subtle computational aspect that has been discussed in the exercise session a couple
of times, but not in the lectures is the following: There is no way to truly work over R or C
in a computer, since that would require encoding equivalence classes of Cauchy sequences or
Dedekind cuts (or whatever your favorite way of defining these fields is).

Here, we will discuss a few different approaches for dealing with this difficulty.

0.1. Floating point arithmetic. One approach is to “model” C or R by working with floating
point approximations. For applications, this is often good enough (and it often makes calcu-
lations very fast), but one has to be careful with rounding errors, and in many cases, it is
useful to use interval arithmetic to be able to draw precise conclusions from floating point
calculations.

In the course, we have used floating point and interval arithmetic every time we have used HC.jl.
We have also used it a couple of times to solve univariate polynomial equations in Oscar. (Recall
that the way we created floating point models with interval arithmetic of C and R in Oscar was
by setting CC=AcbField(64) and RR=ArbField(64), respectively. These models work great with
for example the roots command.)

However, it is not a good idea to use these models for ideal-theoretic calculations such as
Gröbner bases, since the rounding errors can give rise to completely incorrect results.

Example 0.1. If we approximate the ideal ⟨x2 − 1, x + 1⟩ ⊆ C[x] (which is equal to ⟨x + 1⟩),
by ⟨x2 − 1.00001, x+ 1⟩ we obtain an ideal that is equal to ⟨1⟩, since

(x2 − 1.00001)− (x− 1)(x+ 1) = 0.00001 ̸= 0 .

0.2. Working over Q. Most systems we work with are defined in terms of generators with
rational coefficients. This allows us to do the calculations over Q, even if we want to work over
R or C, thanks to the following result:

Proposition 0.2. Fix a monomial ordering ≺ on Zn
≥0. Let f1, . . . , fs ∈ Q[x1, . . . , xn], and

suppose that G ⊆ [x1, . . . , xn] is a Gröbner basis with respect to ≺ for the ideal IQ = ⟨f1, . . . , fs⟩
formed in Q[x1, . . . , xn]. Then G is also a basis with respect to ≺ for the ideal IK = ⟨f1, . . . , fs⟩
formed in K[x1, . . . , xn], where K equals R or C (or any other extension of Q).

Proof. Apply the Buchberger criterion. □

Example 0.3. The result of the following computation will be a Gröbner basis in the ring
Q[x, y], but also R[x, y] and C[x, y]:

R, (x,y) = polynomial_ring(QQ,["x","y"])

I = ideal([x^2+y^2+1//3, x^2+x*y+1//3*x])

G = groebner_basis(I)

On the other hand, the following computation incorrectly gives {1} as a Gröbner basis:

CC = AcbField(64)

R, (x,y) = polynomial_ring(CC,["x","y"])

I = ideal([x^2+y^2+1//3, x^2+x*y+1//3*x])

G = groebner_basis(I)

Remark 0.4. We raised the issue that this can be confusing to the Oscar developers, and it
seems like they agree and that in future versions, groebner_basis will throw an error if you
try to use them for fields with floating point arithmetic. See Issue #3207 on Github.

0.3. Finite field extension. If you have a finite generating set for an ideal in C[x1, . . . , xn],
there will be a most finitely many non-rational coefficients appearing in it, say α1, . . . , αr ∈ C,
and we can extend Q to Q(α1, . . . , αr) ⊂ C which can be encoded with exact arithmetic in
Oscar. The practicalities of doing this is beyond the scope of the course, but you can read more
in the number theory part of the Oscar documentation.

1

https://github.com/oscar-system/Oscar.jl/issues/3207

	0.1. Floating point arithmetic
	0.2. Working over Q
	0.3. Finite field extension

