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Plan for the week
I Introduction to numerical algebraic geometry, with emphasis on

computational tools in Julia, and the basic underlying ideas.

I This lecture: Background and certification.

I Tuesday session: Homotopy continuation and exercises.

Images from: https://analyticphysics.com/
P. Breiding, F. Sottile, J. Woodcock. Euclidean distance degree and mixed volume. Found. Comput. Math. (2022).
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What is Numerical Algebraic Geometry?
Our goal is to solve polynomial systems over the complex numbers:8>><>>:

f1(x1; : : : ; xn) = 0
...
fm(x1; : : : ; xn) = 0

F = (f1; : : : ; fm) ∈ (C[x1; : : : ; xn])m :

We want an explicit description of V(f1; : : : ; fm) ⊆ Cn :

I How many solutions are there?

I If finitely many, find rational approximations of all solutions.

I If infinitely many, find sample points and describe the geometry
(dimension, irreducible components, etc.).

Numerical algebraic geometry does this by combining algebra and numerics!
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Methods for approximating solutions
Newton’s method:

x (n+1) = x (n) −
`
@F
@x

´−1
F (x (n))

Elimination (Week 3):8><>:
x2 + y 2 + z2 − 4 = 0

x2 + 2y 2 − 5 = 0

xz − 1 = 0

8><>:
x − 3z + 2z3 = 0

y 2 − z2 − 1 = 0

2z4 − 3z2 + 1 = 0

Eigenvalues of multiplication matrices (Week 4):(
1 + x − y − xy = 0

1− x + 2y = 0
mx =

„
1 2
2 1

«
; my =

„
0 1
1 0

«

Homotopy continuation (Tuesday).
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The certification problem
Suppose that we have approximate solutions ‰(1); : : : ; ‰(k) ∈ Cn of a system

F = (f1; : : : ; fm) ∈ (C[x1; : : : ; xn])m :

What can we say about the true solutions that ‰(1); : : : ; ‰(k) approximate?

I How big is the approximation error?
I Do they approximate distinct true solutions?
I Are any of the true solutions real?
I Are any of the true solutions positive?

Example: The univariate f (x) = x3 − 4x − 5 with approximations

‰(1) = -1.2283391715220555 + 0.7255696802419939im

‰(2) = -1.2283391715220554 - 0.725569680241994im

‰(3) = 2.456678343044111 - 3.851859888774472e-18im :

The certify feature in HomotopyContinuation.jl can answer these
questions, with rigorous proofs!
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How does certify do this (roughly speaking)?
Input:
I A square polynomial system F = (f1; : : : ; fn) ∈ (C[x1; : : : ; xn])n.
I A list of approximations of solutions ‰(1); : : : ; ‰(k) ∈ Cn.

Step 1: Refine each ‰(i) with Newton’s method to better approximation ‰̃(i).

Step 2: For each ‰̃(i), construct a well-chosen small box

I(i) =
`
‰̃
(i)
1 ± "

(i)
1

´
×
`
‰̃
(i)
2 ± "

(i)
2

´
× · · · ×

`
‰̃
(i)
n ± "

(i)
n

´
⊆ Cn

and prove (using interval arithmetic) the following properties:

I Each I(i) contains precisely one true solution of the system.
I Newton’s method converges to the true solution from any point in I(i).

Output: The boxes I(1); : : : ; I(k), plus some extra info (for instance data
that makes it possible to verify that each box contains preicely one solution).
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Drawing conclusions from the boxes
Running example: The univariate f (x) = x3 − 4x − 5 with approximations

‰(1) = -1.2283391715220555 + 0.7255696802419939im

‰(2) = -1.2283391715220554 - 0.725569680241994im

‰(3) = 2.456678343044111 - 3.851859888774472e-18im :

Proposition
I If I(i) ∩ I(j) = ?, then ‰(i) and ‰(j) approximate distinct true solutions.
I If I(i) ∩ Rn = ?, then ‰(i) approximates a nonreal solution.

Left to answer: How can we prove that a ‰(i) approximates a real solution?
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Strategy for certifying reality (sketch)
Let F = (f1; : : : ; fn) ∈ (R[x1; : : : ; xn])n, let ‰ ∈ Cn be an approximation of a root.
Let I ⊆ Cn be a box with ‰ ∈ I, where we have verified that there is a unique root.

Let’s call this unique root s. We want to show that s ∈ Rn.

Key observation: Since the system has real coefficients, s̄ is also a root.

The way certify tries to do this is as follows:
I Use Newton’s method to shrink I to a smaller set J ⊆ I with s ∈ J.
I Let J̄ be the elementwise conjugate.
I Check if J̄ ⊆ I.
I If yes, then s̄ ∈ I (since s̄ ∈ J̄).
I But s was by assumption the unique root in I.
I Hence s̄ = s, which shows that s ∈ Rn.
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Certifying reality in practice

I The command is_real returns true on the ith element of
certificates(cert) if we were able to verify that ‰(i) approximates a real
true solution.
In this case, we have a proof that ‰(i) approximates a real true solution.

I It returns false if the program failed to certify reality.
This does not necessarily mean that ‰(i) approximates a nonreal solution. To
prove this, we should instead try to show I(i) ∩ Rn = ?.

Proposition
Suppose ‰(i) approximates a real true solution. Then that solution is contained in
the real part Re(I(i)) ⊆ Rn. In particular, if Re(I(i)) ⊆ Rn

>0, then the true solution
must be positive.
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Summary
Given a system F = (f1; : : : ; fn) ∈ (C[x1; : : : ; xn])n with finitely many solutions,
numerical algebraic geometry attempts to describe V(f1; : : : ; fn) ⊆ Cn with the
help of rational approximations.

Common approximation methods: Newton’s method, elimination, eigenvalues of
multiplication matrices, homotopy continuation...

The certify command in HomotopyContinuation.jl provides provable
information about the true solutions that our approximations approximate,
concerning distinctness, reality and positivity.

I The certify commands can be used for any list of approximate solutions.
They don’t necessarily have to come from homotopy continuation.

I Certification won’t tell us whether we have found all solutions to our system.
To say something about this we need an upper bound on #V(f1; : : : ; fn), e.g.

#V(f1; : : : ; fn) 6 dimC

“
C[x1;:::;xn]
⟨f1;:::;fn⟩

”
;

or the Bézout bound (Tuesday), or the mixed volume (Week 7).
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