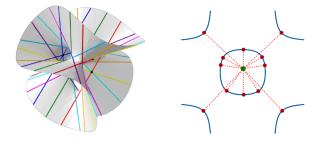
Numerical Algebraic Geometry and Certification

Oskar Henriksson University of Copenhagen

December 18, 2022

Plan for the week

- Introduction to numerical algebraic geometry, with emphasis on computational tools in Julia, and the basic underlying ideas.
- This lecture: Background and certification.
- Tuesday session: **Homotopy continuation** and exercises.



Images from: https://analyticphysics.com/ P. Breiding, F. Sottile, J. Woodcock. Euclidean distance degree and mixed volume. *Found. Comput. Math.* (2022).

What is Numerical Algebraic Geometry?

Our goal is to solve polynomial systems over the complex numbers:

$$\begin{cases} f_1(x_1,\ldots,x_n)=0\\ \vdots \\ f_m(x_1,\ldots,x_n)=0 \end{cases} \qquad \qquad F=(f_1,\ldots,f_m)\in (\mathbb{C}[x_1,\ldots,x_n])^m$$

We want an explicit description of $\mathbb{V}(f_1, \ldots, f_m) \subseteq \mathbb{C}^n$:

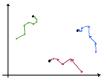
- How many solutions are there?
- ► If finitely many, find rational approximations of all solutions.
- If infinitely many, find sample points and describe the geometry (dimension, irreducible components, etc.).

Numerical algebraic geometry does this by combining *algebra* and *numerics*!

Methods for approximating solutions

Newton's method:

$$x^{(n+1)} = x^{(n)} - \left(\frac{\partial F}{\partial x}\right)^{-1} F(x^{(n)})$$



Elimination (Week 3):

Eigenvalues of multiplication matrices (Week 4):

Homotopy continuation (Tuesday).

The certification problem

Suppose that we have approximate solutions $\xi^{(1)}, \ldots, \xi^{(k)} \in \mathbb{C}^n$ of a system

$$F = (f_1, \ldots, f_m) \in (\mathbb{C}[x_1, \ldots, x_n])^m$$
.

What can we say about the true solutions that $\xi^{(1)}, \ldots, \xi^{(k)}$ approximate?

- How big is the approximation error?
- Do they approximate distinct true solutions?
- Are any of the true solutions real?
- Are any of the true solutions positive?

Example: The univariate $f(x) = x^3 - 4x - 5$ with approximations

$$\begin{split} \xi^{(1)} &= -1.2283391715220555 \ + \ 0.7255696802419939 \text{im} \\ \xi^{(2)} &= -1.2283391715220554 \ - \ 0.725569680241994 \text{im} \\ \xi^{(3)} &= 2.456678343044111 \ - \ 3.851859888774472 \text{e-}18 \text{im} \,. \end{split}$$

The certify feature in HomotopyContinuation.jl can answer these questions, with rigorous proofs!

Oskar Henriksson

The certification problem

Suppose that we have approximate solutions $\xi^{(1)},\ldots,\xi^{(k)}\in\mathbb{C}^n$ of a system

$$F = (f_1, \ldots, f_m) \in (\mathbb{C}[x_1, \ldots, x_n])^m$$
.

What can we say about the true solutions that $\xi^{(1)}, \ldots, \xi^{(k)}$ approximate?

- How big is the approximation error?
- Do they approximate distinct true solutions?
- Are any of the true solutions real?
- Are any of the true solutions positive?

```
using HomotopyContinuation
@var x
F = System([x^3-4*x-5])
approximations = [[-1.2283391715220555 + 0.7255696802419939im],[-1.2283391715220554 - 0.725569680241993
cert = certify(F,approximations)
```

CertificationResult

- 3 solution candidates given
- 3 certified solution intervals (1 real, 2 complex)
- 3 distinct certified solution intervals (1 real, 2 complex)

How does certify do this (roughly speaking)? Input:

- A square polynomial system $F = (f_1, \ldots, f_n) \in (\mathbb{C}[x_1, \ldots, x_n])^n$.
- A list of approximations of solutions $\xi^{(1)}, \ldots, \xi^{(k)} \in \mathbb{C}^n$.

Step 1: Refine each $\xi^{(i)}$ with Newton's method to better approximation $\tilde{\xi}^{(i)}$. **Step 2:** For each $\tilde{\xi}^{(i)}$, construct a well-chosen small box

$$I^{(i)} = \left(ilde{\xi}_1^{(i)} \pm arepsilon_1^{(i)}
ight) imes \left(ilde{\xi}_2^{(i)} \pm arepsilon_2^{(i)}
ight) imes \cdots imes \left(ilde{\xi}_n^{(i)} \pm arepsilon_n^{(i)}
ight) \subseteq \mathbb{C}^n$$

and prove (using interval arithmetic) the following properties:

- Each $I^{(i)}$ contains **precisely one** true solution of the system.
- Newton's method converges to the true solution from any point in $I^{(i)}$.

Output: The boxes $I^{(1)}, \ldots, I^{(k)}$, plus some extra info (for instance data that makes it possible to verify that each box contains preicely one solution).

6/10

Drawing conclusions from the boxes

Running example: The univariate $f(x) = x^3 - 4x - 5$ with approximations

$$\begin{split} \xi^{(1)} &= -1.2283391715220555 \ + \ 0.7255696802419939 \text{im} \\ \xi^{(2)} &= -1.2283391715220554 \ - \ 0.725569680241994 \text{im} \\ \xi^{(3)} &= 2.456678343044111 \ - \ 3.851859888774472 \text{e-}18 \text{im} \end{split}$$

Proposition

If I⁽ⁱ⁾ ∩ I^(j) = Ø, then ξ⁽ⁱ⁾ and ξ^(j) approximate distinct true solutions.
 If I⁽ⁱ⁾ ∩ ℝⁿ = Ø, then ξ⁽ⁱ⁾ approximates a nonreal solution.

Left to answer: How can we prove that a $\xi^{(i)}$ approximates a real solution?

Strategy for certifying reality (sketch)

Let $F = (f_1, \ldots, f_n) \in (\mathbb{R}[x_1, \ldots, x_n])^n$, let $\xi \in \mathbb{C}^n$ be an approximation of a root. Let $I \subseteq \mathbb{C}^n$ be a box with $\xi \in I$, where we have verified that there is a unique root.

Let's call this unique root s. We want to show that $s \in \mathbb{R}^n$.

Key observation: Since the system has real coefficients, \bar{s} is also a root.

The way certify tries to do this is as follows:

- Use Newton's method to shrink I to a smaller set $J \subseteq I$ with $s \in J$.
- Let \overline{J} be the elementwise conjugate.
- Check if $\overline{J} \subseteq I$.
- If yes, then $\bar{s} \in I$ (since $\bar{s} \in \bar{J}$).
- But *s* was by assumption the unique root in *I*.
- Hence $\bar{s} = s$, which shows that $s \in \mathbb{R}^n$.

Certifying reality in practice



The command is_real returns true on the *i*th element of certificates(cert) if we were able to verify that ξ⁽ⁱ⁾ approximates a real true solution.

In this case, we have a *proof* that $\xi^{(i)}$ approximates a real true solution.

It returns false if the program failed to certify reality. This does *not* necessarily mean that ξ⁽ⁱ⁾ approximates a nonreal solution. To prove this, we should instead try to show I⁽ⁱ⁾ ∩ ℝⁿ = Ø.

Proposition

Suppose $\xi^{(i)}$ approximates a real true solution. Then that solution is contained in the real part $\text{Re}(I^{(i)}) \subseteq \mathbb{R}^n$. In particular, if $\text{Re}(I^{(i)}) \subseteq \mathbb{R}^n_{>0}$, then the true solution must be positive.

Summary

Given a system $F = (f_1, \ldots, f_n) \in (\mathbb{C}[x_1, \ldots, x_n])^n$ with finitely many solutions, numerical algebraic geometry attempts to describe $\mathbb{V}(f_1, \ldots, f_n) \subseteq \mathbb{C}^n$ with the help of rational approximations.

Common approximation methods: Newton's method, elimination, eigenvalues of multiplication matrices, homotopy continuation...

The certify command in HomotopyContinuation.jl provides **provable** information about the *true solutions* that our approximations approximate, concerning distinctness, reality and positivity.

- The certify commands can be used for any list of approximate solutions. They don't necessarily have to come from homotopy continuation.
- Certification won't tell us whether we have found all solutions to our system. To say something about this we need an upper bound on #V(f₁,..., f_n), e.g.

$$\#\mathbb{V}(f_1,\ldots,f_n)\leqslant \dim_{\mathbb{C}}\left(rac{\mathbb{C}[x_1,\ldots,x_n]}{\langle f_1,\ldots,f_n
angle}
ight)$$
,

or the Bézout bound (Tuesday), or the mixed volume (Week 7).