PROBLEM SET FOR WEEK 3

OSKAR HENRIKSSON

These problems will be discussed in the exercise classes in Week 3. Hand in clear, independently written solutions to one of the problems on Absalon by Thursday, February 23 at 10:00.

Problem 1 (Localization of rings).
(a) Describe the elements of the ring $\mathbb{C}[x, y]_{(x, y)}$. Give a geometric interpretation!
(b) Prove that $\frac{[y]}{[1]}=0$ in the ring $\left(\frac{\mathbb{C}[x, y]}{(x y)}\right)_{([x-1],[y])}$.
(c) Let R be a ring, $T \subseteq R$ be a multiplicative subset. Prove that the localization map $\tau: R \rightarrow R_{T}$ satisfies the following universal property:

- $\tau(T) \subseteq\left(R_{T}\right)^{\times}$
- For any ring homomorphism $\varphi: R \rightarrow S$ such that $\varphi(T) \subseteq S^{\times}$, there exists a unique ring homomorphism $\widetilde{\varphi}: R_{T} \rightarrow S$ that makes the following diagram commute:

Prove also that any R-algebra $\alpha: R \rightarrow A$ that satisfies this is isomorphic to $\tau: R \rightarrow R_{T}$.
(d) Let R be a ring, let $I \subseteq R$ be an ideal, and let $T \subseteq R$ be a multiplicative subset. Let $\pi: R \rightarrow R / I$ be the quotient map. Prove that $R_{T} / I_{T} \cong(R / I)_{\pi(T)}$ as rings.
Hint: Check that $\alpha: R / I \rightarrow R_{T} / I_{T},[r] \mapsto[r / 1]$ satisfies the universal property.
Problem 2 (Local rings).
(a) Let R be a ring, and let $\mathfrak{m} \subsetneq R$ be a maximal ideal. Prove that the following are equivalent:
(i) R is a local ring
(ii) $\mathfrak{m}=R \backslash R^{\times}$
(iii) $1-f \in R^{\times}$for every $f \in \mathfrak{m}$.

Illustrate this with some examples for $R=\mathbb{C}[x] /\left(x^{2}\right)$ and $R=\mathbb{Z}_{(2)}$.
(b) Prove the following simplified version of Nakayama's lemma (which we will see in greater generality later in the course):
Let R be a local ring with unique maximal ideal \mathfrak{m}, and let M be a finitely generated R-module. Then $\mathfrak{m} M=M$ implies $M=0$.
Hint: Prove that if M is generated by $x_{1}, \ldots, x_{n} \in M$ for some $n \in \mathbb{N}$, then x_{n} can be expressed as an R-linear combination of x_{1}, \ldots, x_{n-1}.
(c) Let R be a local ring with unique maximal ideal \mathfrak{m}, let M be a finitely generated R-module, and let $x_{1}, \ldots, x_{n} \in M$ for some $n \in \mathbb{N}$. Prove that if $\left\{\left[x_{1}\right], \ldots,\left[x_{n}\right]\right\}$ generates $M / \mathfrak{m} M$ as an R / \mathfrak{m}-vector space, then $\left\{x_{1}, \ldots, x_{n}\right\}$ generates M as an R-module.

Hint: Apply part (b) to the quotient module $M / \operatorname{span}_{R}\left\{x_{1}, \ldots, x_{n}\right\}$.
(d) Optional: Are the results in (b) and (c) true if we remove the assumption of the module being finitely generated? Hint: Try $R=Z_{(2)}$ and $M=\mathbb{Q} / Z_{(2)}$.

Problem 3 (Localization of modules).
(a) Let R be a ring, and let $T \subseteq R$ be a multiplicative subset. Explain what the localization functor $-_{T}: R$ Mod $\rightarrow R_{T}$ Mod does to R-modules and R-linear maps, and prove that it really is a functor.
(b) Let R be a ring, let $T \subseteq R$ be a multiplicative set, and let M be an R-module. Prove that the localization map $\gamma: M \rightarrow M_{T}$ satisfies the following universal property:

- M_{T} is T-local, when seen as an R-module.
- For any R-linear map $f: M \rightarrow N$, where N is a T-local R-module, there exists a unique R-linear map $\widetilde{f}: M_{T} \rightarrow N$ that makes the following diagram commute:

(c) Use the fact that $-_{T}: R \operatorname{Mod} \rightarrow R_{T}$ Mod is exact to prove that it sends injective/surjective maps to injective/surjective maps. Also prove that $(M / N)_{T} \cong M_{T} / N_{T}$ for any R-module M and submodule N.
(d) Let M be an R-module, and let $x, y \in M$. Prove that $x=y$ if and only if $\frac{x}{1}=\frac{y}{1}$ in $M_{\mathfrak{m}}$ for every maximal ideal $\mathfrak{m} \subsetneq M$.

Problem 4 (More on the spectrum).
(a) Describe the points and open subsets of $\operatorname{Spec}(\mathbb{C}[[x]])$, where $\mathbb{C}[[x]]$ is the ring of formal power series with complex coefficients.
(b) Let R be a ring and let $T \subseteq R$ be a multiplicative subset. Recall that the localization map $\tau: R \rightarrow R_{T}$ induces a bijection

$$
\tau^{*}: \operatorname{Spec}\left(R_{T}\right) \rightarrow\{\mathfrak{p} \in \operatorname{Spec}(R): \mathfrak{p} \cap T=\varnothing\}
$$

Prove that this is a homeomorphism, if the image is given the subspace topology in $\operatorname{Spec}(R)$.
Hint: Prove that τ^{*} is a closed map onto its image.
(c) What is the image of τ^{*} when $T=\left\{f^{n}: n \in \mathbb{N}\right\}$ for some $f \in R$, and when $T=R \backslash \mathfrak{p}$ for some $\mathfrak{p} \in \operatorname{Spec}(R)$? Illustrate this with some concrete examples for $R=\mathbb{Z}$.
(d) Optional challenge: Think a bit about what $\operatorname{Spec}(\mathbb{Z}[x])$ looks like. Then have a look at Mumford's famous illustration from The Red Book of Varieties and Schemes, and see if you can make sense of some part of it:

