PROBLEM SET FOR WEEK 3

OSKAR HENRIKSSON

These problems will be discussed in the exercise classes in Week 3. Hand in clear, independently written solutions to **one** of the problems on Absalon by Thursday, February 23 at 10:00.

Problem 1 (Localization of rings).

- (a) Describe the elements of the ring $\mathbb{C}[x, y]_{(x,y)}$. Give a geometric interpretation!
- (b) Prove that $\frac{[y]}{[1]} = 0$ in the ring $\left(\frac{\mathbb{C}[x,y]}{(xy)}\right)_{([x-1],[y])}$.
- (c) Let R be a ring, $T \subseteq R$ be a multiplicative subset. Prove that the localization map $\tau: R \to R_T$ satisfies the following universal property:
 - $\tau(T) \subseteq (R_T)^{\times}$
 - For any ring homomorphism $\varphi \colon R \to S$ such that $\varphi(T) \subseteq S^{\times}$, there exists a unique ring homomorphism $\tilde{\varphi} \colon R_T \to S$ that makes the following diagram commute:

Prove also that any R-algebra $\alpha: R \to A$ that satisfies this is isomorphic to $\tau: R \to R_T$.

(d) Let R be a ring, let $I \subseteq R$ be an ideal, and let $T \subseteq R$ be a multiplicative subset. Let $\pi: R \to R/I$ be the quotient map. Prove that $R_T/I_T \cong (R/I)_{\pi(T)}$ as rings. *Hint:* Check that $\alpha: R/I \to R_T/I_T$, $[r] \mapsto [r/1]$ satisfies the universal property.

Problem 2 (Local rings).

- (a) Let R be a ring, and let $\mathfrak{m} \subsetneq R$ be a maximal ideal. Prove that the following are equivalent:
 - (i) R is a local ring
 - (ii) $\mathfrak{m} = R \setminus R^{\times}$
 - (iii) $1 f \in \mathbb{R}^{\times}$ for every $f \in \mathfrak{m}$.

Illustrate this with some examples for $R = \mathbb{C}[x]/(x^2)$ and $R = \mathbb{Z}_{(2)}$.

(b) Prove the following simplified version of *Nakayama's lemma* (which we will see in greater generality later in the course):

Let R be a local ring with unique maximal ideal \mathfrak{m} , and let M be a finitely generated R-module. Then $\mathfrak{m}M = M$ implies M = 0.

Hint: Prove that if M is generated by $x_1, \ldots, x_n \in M$ for some $n \in \mathbb{N}$, then x_n can be expressed as an R-linear combination of x_1, \ldots, x_{n-1} .

(c) Let R be a local ring with unique maximal ideal \mathfrak{m} , let M be a finitely generated R-module, and let $x_1, \ldots, x_n \in M$ for some $n \in \mathbb{N}$. Prove that if $\{[x_1], \ldots, [x_n]\}$ generates $M/\mathfrak{m}M$ as an R/\mathfrak{m} -vector space, then $\{x_1, \ldots, x_n\}$ generates M as an R-module.

Hint: Apply part (b) to the quotient module $M/\operatorname{span}_R\{x_1,\ldots,x_n\}$.

(d) Optional: Are the results in (b) and (c) true if we remove the assumption of the module being finitely generated? Hint: Try $R = Z_{(2)}$ and $M = \mathbb{Q}/Z_{(2)}$.

Problem 3 (Localization of modules).

- (a) Let R be a ring, and let $T \subseteq R$ be a multiplicative subset. Explain what the localization functor $-_T: R\mathbf{Mod} \to R_T\mathbf{Mod}$ does to R-modules and R-linear maps, and prove that it really is a functor.
- (b) Let R be a ring, let $T \subseteq R$ be a multiplicative set, and let M be an R-module. Prove that the localization map $\gamma: M \to M_T$ satisfies the following universal property:
 - M_T is T-local, when seen as an R-module.
 - For any *R*-linear map $f: M \to N$, where *N* is a *T*-local *R*-module, there exists a unique *R*-linear map $\tilde{f}: M_T \to N$ that makes the following diagram commute:

- (c) Use the fact that $-_T: R\mathbf{Mod} \to R_T\mathbf{Mod}$ is exact to prove that it sends injective/surjective maps to injective/surjective maps. Also prove that $(M/N)_T \cong M_T/N_T$ for any *R*-module M and submodule N.
- (d) Let M be an R-module, and let $x, y \in M$. Prove that x = y if and only if $\frac{x}{1} = \frac{y}{1}$ in $M_{\mathfrak{m}}$ for every maximal ideal $\mathfrak{m} \subsetneq M$.

Problem 4 (More on the spectrum).

- (a) Describe the points and open subsets of $\text{Spec}(\mathbb{C}[[x]])$, where $\mathbb{C}[[x]]$ is the ring of formal power series with complex coefficients.
- (b) Let R be a ring and let $T \subseteq R$ be a multiplicative subset. Recall that the localization map $\tau: R \to R_T$ induces a bijection

$$\tau^* \colon \operatorname{Spec}(R_T) \to \{ \mathfrak{p} \in \operatorname{Spec}(R) : \mathfrak{p} \cap T = \emptyset \}.$$

Prove that this is a homeomorphism, if the image is given the subspace topology in Spec(R).

Hint: Prove that τ^* is a closed map onto its image.

- (c) What is the image of τ^* when $T = \{f^n : n \in \mathbb{N}\}$ for some $f \in R$, and when $T = R \setminus \mathfrak{p}$ for some $\mathfrak{p} \in \operatorname{Spec}(R)$? Illustrate this with some concrete examples for $R = \mathbb{Z}$.
- (d) Optional challenge: Think a bit about what $\operatorname{Spec}(\mathbb{Z}[x])$ looks like. Then have a look at Mumford's famous illustration from *The Red Book of Varieties and Schemes*, and see if you can make sense of some part of it:

