PROBLEM SET FOR MONDAY WEEK 1

OSKAR HENRIKSSON

This first week of the course, we will discuss smaller warm-up problems to help you get used to thinking about rings, modules and algebraic sets. You don't need to hand in anything this week.

Convention: Unless stated otherwise, all rings will be assumed to be commutative and unital throughout the exercise sessions.

Problem 1 (Rings).
(a) What are the initial and terminal objects in the category of rings?
\mathbb{Z} and 0 (up to isomorphism)
(b) Find rings R and S, and a nonzero map $\varphi: R \rightarrow S$ such that $\varphi(a+b)=\varphi(a)+\varphi(b)$ and $\varphi(a \cdot b)=\varphi(a) \cdot \varphi(b)$ for all $a, b \in R$, but for which $\varphi\left(1_{R}\right) \neq 1_{S}$.

For example, the map $\mathbb{Z} \rightarrow \mathbb{Z} / 6$ given by $n \mapsto[3 n]$, or the map $\mathbb{Z} \rightarrow \mathbb{Z} \times \mathbb{Z}$ given by $n \mapsto(n, 0)$.
(c) Describe the set $\operatorname{Hom}_{\operatorname{Ring}}(\mathbb{Z} / m, \mathbb{Z} / n)$ for all possible choices of $n, m \in \mathbb{Z}_{\geq 0}$.

It's empty if $n \nmid m$, and a singleton if $n \mid m$.
Since a ring homomorphism needs to send the multiplicative identity to the multiplicative identity, the only possible ring homomorphism $\mathbb{Z} / m \rightarrow \mathbb{Z} / n$ is $[x]_{m} \mapsto[x]_{n}$. This is a well-defined ring homomorphism precisely when $n \mid m$.

Note: In the category of abelian groups, we instead have that $\operatorname{Hom}_{\mathbf{A b}}(\mathbb{Z} / m, \mathbb{Z} / n)$ has $\operatorname{gcd}(m, n)$ elements.
(d) Let R be a ring. Prove that there is a bijective correspondance $\operatorname{Hom}_{\mathbf{R i n g}}(\mathbb{Z}[x], R) \leftrightarrow R$.

Consider the map $\operatorname{Hom}_{\text {Ring }}(\mathbb{Z}[x], R) \rightarrow R$ with $(\varphi: \mathbb{Z}[x] \rightarrow R) \mapsto \varphi(x)$ and prove that it's a bijection.
(e) Prove that the abelian group $(\mathbb{Q} / \mathbb{Z},+)$ does not admit a ring structure.

Assume for a contradiction that there is a multiplication operation \circ and a multiplicative identity e that turns $(\mathbb{Q} / \mathbb{Z},+)$ into a ring. If $e=[m / n]$ for some $n \in \mathbb{Z}$, then

$$
\underbrace{e+\cdots+e}_{n \text { times }}=[m]=[0] .
$$

Use the ring axioms to show that this implies that $x+\cdots+x$ (n times) is $[0]$ for all $x \in \mathbb{Q} / \mathbb{Z}$, and derive a contradiction.
(f) Let R and S be rings. Is there a general way to turn $\operatorname{Hom}_{\text {Ring }}(R, S)$ into a ring?
(What about using pointwise addition and multiplication?)
No! For instance, $\operatorname{Hom}_{\text {Ring }}(\mathbb{Z} / 2, \mathbb{Z} / 3)=\varnothing$, and it's impossible to put a ring structure on the empty set, since we need to have an additive identity element.
(Compare this to the situation in the category of abelian groups, where one actually can equip each hom set $\operatorname{Hom}_{\mathbf{A b}}(A, B)$ with an abelian group structure, using pointwise addition and multiplication.)

Problem 2 (Algebras and modules).
(a) Let A be a ring. How many \mathbb{Z}-algebra structures does A admit?

Precisely one! Remember that \mathbb{Z} is the initial object in Ring, so there is a unique ring homomorphism $\mathbb{Z} \rightarrow A$.
(b) Find rings R and A, such that A admits more than one R-algebra structure.

Take $R=\mathbb{Z}[x]$ and $A=\mathbb{Z}$, and use Problem 1(d).
(c) What are the initial and terminal objects in the category of R-algebras for a ring R ?

Up to isomorphism, the initial object is $\left(R, \mathrm{id}_{R}\right)$ and the terminal object is $(0, R \rightarrow 0)$ (where $R \rightarrow 0$ is the constant zero map).
(d) Look up the definition of an R-module. Let R be a ring, and let (A, φ) be an R-algebra. Prove that we get an R-module structure on A by defining the R-action $R \times A \rightarrow A$ to be $r . a=\varphi(r) \cdot a$ for $r \in R$ and $a \in A$.
We need to check that $r \cdot(a+b)=r \cdot a+r \cdot b,(r+s) \cdot a=r \cdot a+s \cdot a,(r s) \cdot a=r \cdot(s \cdot a)$ and $1_{R} \cdot a=a$ for all $r, s \in R$ and $a, b \in A$. For instance, we have

$$
r .(a+b)=\varphi(r)(a+b)=\varphi(r) a+\varphi(r) b=r . a+r . b .
$$

The other properties are shown similarly.
(e) An R-algebra is said to be of finite type if it is finitely generated as an R-algebra, and is said to be finite if it is finitely generated when viewed as an R-module. Spell out what this means. Prove that all finite R-algebras are of finite type. Is the converse true?
If an R-algebra A is finite, then there exists an $n \in \mathbb{N}$ and $a_{1}, \ldots, a_{n} \in A$ such that for any $b \in A$, there exists $r_{1}, \ldots, r_{n} \in R$ such that

$$
b=r_{1} \cdot a_{1}+\cdots+r_{n} \cdot a_{n}=\varphi\left(r_{1}\right) a_{1}+\cdots+\varphi\left(r_{n}\right) a_{n}
$$

In particular, this gives that it's of finite type.
The converse is not true! Consider for example the case with $R=\mathbb{C}$ and $A=\mathbb{C}[x]$, with $\varphi: \mathbb{C} \hookrightarrow \mathbb{C}[x]$ being the usual inclusion. Then $\mathbb{C}[x]$ is of finite type (it's generated by x), but it's an infinite-dimensional \mathbb{C}-vector space, so it's not a finite \mathbb{C}-algebra.

