PROBLEM SET FOR MONDAY WEEK 1

OSKAR HENRIKSSON

This first week of the course, we will discuss smaller warm-up problems to help you get used to thinking about rings, modules and algebraic sets. You don't need to hand in anything this week.

Convention: Unless stated otherwise, all rings will be assumed to be commutative and unital throughout the exercise sessions.

Problem 1 (Rings).

(a) What are the initial and terminal objects in the category of rings?

 \mathbb{Z} and 0 (up to isomorphism)

(b) Find rings R and S, and a nonzero map $\varphi \colon R \to S$ such that $\varphi(a+b) = \varphi(a) + \varphi(b)$ and $\varphi(a \cdot b) = \varphi(a) \cdot \varphi(b)$ for all $a, b \in R$, but for which $\varphi(1_R) \neq 1_S$.

For example, the map $\mathbb{Z} \to \mathbb{Z}/6$ given by $n \mapsto [3n]$, or the map $\mathbb{Z} \to \mathbb{Z} \times \mathbb{Z}$ given by $n \mapsto (n, 0)$.

(c) Describe the set $\operatorname{Hom}_{\operatorname{Ring}}(\mathbb{Z}/m,\mathbb{Z}/n)$ for all possible choices of $n,m\in\mathbb{Z}_{\geq 0}$.

It's empty if $n \nmid m$, and a singleton if $n \mid m$.

Since a ring homomorphism needs to send the multiplicative identity to the multiplicative identity, the only possible ring homomorphism $\mathbb{Z}/m \to \mathbb{Z}/n$ is $[x]_m \mapsto [x]_n$. This is a well-defined ring homomorphism precisely when $n \mid m$.

Note: In the category of abelian groups, we instead have that $\operatorname{Hom}_{Ab}(\mathbb{Z}/m,\mathbb{Z}/n)$ has $\operatorname{gcd}(m,n)$ elements.

(d) Let R be a ring. Prove that there is a bijective correspondance $\operatorname{Hom}_{\operatorname{Ring}}(\mathbb{Z}[x], R) \leftrightarrow R$.

Consider the map $\operatorname{Hom}_{\operatorname{\mathbf{Ring}}}(\mathbb{Z}[x], R) \to R$ with $(\varphi \colon \mathbb{Z}[x] \to R) \mapsto \varphi(x)$ and prove that it's a bijection.

(e) Prove that the abelian group $(\mathbb{Q}/\mathbb{Z}, +)$ does not admit a ring structure.

Assume for a contradiction that there is a multiplication operation \circ and a multiplicative identity e that turns $(\mathbb{Q}/\mathbb{Z}, +)$ into a ring. If e = [m/n] for some $n \in \mathbb{Z}$, then

$$\underbrace{e + \dots + e}_{n \text{ times}} = [m] = [0].$$

Use the ring axioms to show that this implies that $x + \cdots + x$ (*n* times) is [0] for all $x \in \mathbb{Q}/\mathbb{Z}$, and derive a contradiction.

(f) Let R and S be rings. Is there a general way to turn $\operatorname{Hom}_{\operatorname{Ring}}(R, S)$ into a ring? (What about using pointwise addition and multiplication?)

No! For instance, $\operatorname{Hom}_{\operatorname{\mathbf{Ring}}}(\mathbb{Z}/2,\mathbb{Z}/3) = \emptyset$, and it's impossible to put a ring structure on the empty set, since we need to have an additive identity element.

(Compare this to the situation in the category of abelian groups, where one actually *can* equip each hom set $\text{Hom}_{Ab}(A, B)$ with an abelian group structure, using pointwise addition and multiplication.)

Problem 2 (Algebras and modules).

(a) Let A be a ring. How many \mathbb{Z} -algebra structures does A admit?

Precisely one! Remember that \mathbb{Z} is the initial object in **Ring**, so there is a unique ring homomorphism $\mathbb{Z} \to A$.

- (b) Find rings R and A, such that A admits more than one R-algebra structure. Take $R = \mathbb{Z}[x]$ and $A = \mathbb{Z}$, and use Problem 1(d).
- (c) What are the initial and terminal objects in the category of R-algebras for a ring R?

Up to isomorphism, the initial object is (R, id_R) and the terminal object is $(0, R \to 0)$ (where $R \to 0$ is the constant zero map).

(d) Look up the definition of an *R*-module. Let *R* be a ring, and let (A, φ) be an *R*-algebra. Prove that we get an *R*-module structure on *A* by defining the *R*-action $R \times A \to A$ to be $r.a = \varphi(r) \cdot a$ for $r \in R$ and $a \in A$.

We need to check that r.(a + b) = r.a + r.b, (r + s).a = r.a + s.a, (rs).a = r.(s.a) and $1_{R}.a = a$ for all $r, s \in R$ and $a, b \in A$. For instance, we have

$$r.(a+b) = \varphi(r)(a+b) = \varphi(r)a + \varphi(r)b = r.a + r.b$$

The other properties are shown similarly.

(e) An *R*-algebra is said to be of *finite type* if it is finitely generated as an *R*-algebra, and is said to be *finite* if it is finitely generated when viewed as an *R*-module. Spell out what this means. Prove that all finite *R*-algebras are of finite type. Is the converse true?

If an *R*-algebra *A* is finite, then there exists an $n \in \mathbb{N}$ and $a_1, \ldots, a_n \in A$ such that for any $b \in A$, there exists $r_1, \ldots, r_n \in R$ such that

$$b = r_1 a_1 + \dots + r_n a_n = \varphi(r_1)a_1 + \dots + \varphi(r_n)a_n.$$

In particular, this gives that it's of finite type.

The converse is not true! Consider for example the case with $R = \mathbb{C}$ and $A = \mathbb{C}[x]$, with $\varphi \colon \mathbb{C} \to \mathbb{C}[x]$ being the usual inclusion. Then $\mathbb{C}[x]$ is of finite type (it's generated by x), but it's an infinite-dimensional \mathbb{C} -vector space, so it's not a finite \mathbb{C} -algebra.