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What is a reaction network?

I A network of interconnected reactions:
I ...that gives rise to a system of differential equations

under mass action kinetics:

d
dt [O] = k1[O3]− k2[O][O2]− k3[O][O3]
d
dt [O2] = k1[O3]− k2[O][O2] + 2k3[O][O3]
d
dt [O3] = − k1[O3] + k2[O][O2]− k3[O][O3]
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Not just chemistry!

[T ]′ = s1 + k1[T ][V ]− k2[T ][V ]− ‹1[T ]
[Ti ]

′ = k2[T ][V ]− ‹2[Ti ]
[M]′ = s2 + k3[M][V ]− k4[M][V ]− ‹3[M]

[Mi ]
′ = k4[M][V ]− ‹4[Mi ]

[V ]′ = k5[Ti ] + k6[Mi ]− ‹5[V ]
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An example from the news!
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A + B
˛−−→ 2B

B
‚−−→ C
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An example from the news!

A + B
˛−−→ 2B

B
‚−−→ C

[A]′ = −˛[A][B]
[B]′ = ˛[A][B]− ‚[B]
[C]′ = ‚[B]
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An example from the news!

S + I
˛−−→ 2 I

I
‚−−→ R

[S]′ = −˛[S][ I ]
[ I ]′ = ˛[S][ I ]− ‚[ I ]
[R]′ = ‚[ I ]
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The dynamics of reaction networks

What happens when t →∞?
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The Selkov model for glycolysis

X
1−−→ ?

2X + Y
1−−→ 3X

? b−−→ Y
a−−→ X
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A network with multistability

X + Y
1−−→ X

a−−*)−−
1

2X

X + Y
2−−→ Y

b−−*)−−
1

2Y

Oskar Henriksson Gröbner bases and reaction networks September 6, 2020 8 / 27



A network with multistability

X + Y
1−−→ X

a−−*)−−
1

2X

X + Y
2−−→ Y

b−−*)−−
1

2Y

Oskar Henriksson Gröbner bases and reaction networks September 6, 2020 8 / 27



A network with multistability

X + Y
1−−→ X

a−−*)−−
1

2X

X + Y
2−−→ Y

b−−*)−−
1

2Y

Oskar Henriksson Gröbner bases and reaction networks September 6, 2020 8 / 27



A network with multistability

X + Y
1−−→ X

a−−*)−−
1

2X

X + Y
2−−→ Y

b−−*)−−
1

2Y

Oskar Henriksson Gröbner bases and reaction networks September 6, 2020 8 / 27



A network with multistability

X + Y
1−−→ X

a−−*)−−
1

2X

X + Y
2−−→ Y

b−−*)−−
1

2Y

[X]′ = a[X]− [X]2 − 2[X][Y]

[Y]′ = b[Y]− [Y]2 − [X][Y]
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A network with multistability

X + Y
1−−→ X

a−−*)−−
1

2X

X + Y
2−−→ Y

b−−*)−−
1

2Y

0 = a[X]− [X]2 − 2[X][Y ]

0 = b[Y ]− [Y ]2 − [X][Y ]
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The long-term goal

Possible applications:

I Planning in synthetic biology

I Hypothesis testing in systems biology
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The problem?

Unknown rate constants!

Forces us to work algebraically och symbolically.
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Gröbner bases:

A method for rewriting a system
of polynomial equations in a smart way
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Gaussian elimination:
A method for rewriting a system
of linear equations in a smart way
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Example
x > y

2x + 6y = −6
5x + 2y = 11

Put differently: We knocked out the rows against each other!

S = 5 · (2x + 6y + 6)− 2 · (5x + 2y − 11) = 26y + 52
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Example
x > y

2x + 6y = −6
5x + 2y = 11

10x + 30y = −30
10x + 4y = 22

Put differently: We knocked out the rows against each other!

S = 5 · (2x + 6y + 6)− 2 · (5x + 2y − 11) = 26y + 52
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Example
x > y
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10x + 30y = −30
−26y = 52

Put differently: We knocked out the rows against each other!
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Example
x > y

2x + 6y = −6
5x + 2y = 11

10x + 30y = −30
y = −2

Put differently: We knocked out the rows against each other!

S = 5 · (2x + 6y + 6)− 2 · (5x + 2y − 11) = 26y + 52
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Example
x > y

2x + 6y = −6
5x + 2y = 11

10x − 60 = −30
y = −2

Put differently: We knocked out the rows against each other!

S = 5 · (2x + 6y + 6)− 2 · (5x + 2y − 11) = 26y + 52
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Example
x > y

2x + 6y = −6
5x + 2y = 11

x = 3

y = −2

Put differently: We knocked out the rows against each other!

S = 5 · (2x + 6y + 6)− 2 · (5x + 2y − 11) = 26y + 52
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Example
x > y

2x + 6y = −6
5x + 2y = 11

x = 3

y = −2

Put differently: We knocked out the rows against each other!

S = 5 · (2x + 6y + 6)− 2 · (5x + 2y − 11) = 26y + 52
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A polynomial example
x > y (lex)

x2 + 2xy2 = 0

xy + 2y3 − 1 = 0

x = 0

2y3 − 1 = 0

S(f1; f2) = y(x2 + 2xy2)− x(xy + 2y3 − 1) = x

S(f2; f3) = (xy + 2y3 − 1)− yx = 2y3 − 1
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The Buchberger algorithm

Input: F = {f1; : : : ; fm} och an “order of prioritization” for the variables.

Output: G = {g1; : : : ; gr}.

1 Let G ..= F .

2 Pick a pair p; q ∈ G.

3 Identify the leading terms and “knock them out” by setting
S = ffp + fiq for appropriate polynomials ff and fi .

4 Reduce S with respect to the other elements in G. If there is a
remainder (i.e. S “contributes something new”), then add it to G.

5 Go back to Step 2.

6 Keep going until all possible pairs of polynomials in G
(including newcommers) have been investigated.

7 Clean up G.
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S = ffp + fiq for appropriate polynomials ff and fi .

4 Reduce S with respect to the other elements in G. If there is a
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Example
x > y > z (lex)

x2 + y2 + z2 − 4 = 0

x2 + 2y2 − 5 = 0

xz − 1 = 0

x − 3z + 2z3 = 0

y2 − z2 − 1 = 0

2z4 − 3z2 + 1 = 0

In total: 8 solutions!
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Example

ax − x2 − 2xy = 0

by − y2 − xy = 0

by + xy + y2 = 0

−ax + 2by + x2 − 2y2 = 0

Solutions: (0; 0); (0; b); (a; 0); (−a+ 2b; a− b).
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Example

ax − x2 − 2xy = 0

by − y2 − xy = 0

by + xy + y2 = 0

−ax + 2by + x2 − 2y2 = 0

y3 − ay2 + (ab − b2)y = 0

Solutions: (0; 0); (0; b); (a; 0); (−a+ 2b; a− b).
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Example
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by − y2 − xy = 0

by + xy + y2 = 0

−ax + 2by + x2 − 2y2 = 0
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A promising example from the literature:

Biochemical hypothesis testing
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Phosphorylation/dephosphorylation

K + S0

a−−*)−−
b

KS0
c−−→ K + S1

F + S1

¸−−*)−−
˛

FS1
‚−−→ F + S0
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Double phosphorylation

K + S00
a00−−*)−−
b00

KS00

8>><>>:
c00;01−−−→ K + S01
c00;10−−−→ K + S10

c00;11−−−→ K + S11

K + S01
a01−−*)−−
b01

KS01
c01;11−−−→ K + S11

K + S10
a10−−*)−−
b10

KS10
c10;11−−−→ K + S11

F + S01
¸01−−*)−−
˛01

FS01
‚01;00−−−→ F + S00

F + S10
¸10−−*)−−
˛10

FS10
‚10;00−−−→ F + S00

F + S11
¸11−−*)−−
˛11

FS11

( ‚11;01−−−→ F + S01
‚11;10−−−→ F + S10
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Differential equations
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Steady state equations

Problem: We can only measure [S00], [S01], [S10] och [S11].

Idea: Compute a Gröbner basis that eliminates variables!
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Gröbner basis computation
(Model without simultaneous double phosphorylation.)

—1[S00][S11] + —2[S01][S10] + —3[S01][S11] + —4[S10]
2 + —5[S10][S11] = 0

Conclusion: If the model without simultaneous double phosphorylation is
correct, then an equation on this form will hold for all steady states

(independently of total concentrations).
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Strategy for hypothesis testing

I Hypothesis: The kinase can not phsophorylate at two sites simultaneously.
I Run experiments with different total concentrations, and measure

concentrations at the steady states.
I Measure [S00], [S01], [S10] och [S11] och compute the vector

([S00][S11]; [S01][S10]; [S01][S11]; [S10]
2; [S10][S11]).

Sample [S00] [S01] [S10] [S11] ([S00][S11]; [S01][S10]; [S01][S11]; [S10]
2; [S10][S11])

#1 0.44 0.18 0.96 0.19 (0.10, 0.04, 0.18, 0.02, 0.04, 0.10)
#2 0.74 0.58 0.43 0.10 (0.05, 0.04, 0.25, 0.03, 0.01, 0.02)
#3 0.25 0.13 0.26 0.94 (0.42, 0.11, 0.03, 0.05, 0.89, 0.11)
#4 0.20 0.43 0.17 0.11 (0.31, 0.06, 0.07, 0.13, 0.01, 0.05)
#5 0.22 0.65 0.14 0.26 (0.39, 0.09, 0.09, 0.26, 0.07, 0.05)
#6 0.31 0.66 0.76 0.32 (0.39, 0.12, 0.50, 0.26, 0.10, 0.30)
#7 0.25 0.47 0.24 0.53 (0.86, 0.21, 0.11, 0.40, 0.28, 0.21)
#8 0.17 0.72 0.51 0.01 (0.29, 0.05, 0.37, 0.21, 0.00, 0.15)
#9 0.48 0.81 0.23 0.51 (0.39, 0.19, 0.19, 0.31, 0.26, 0.09)

(Fictitious data for illustration purposes only.)

I Check: Do the vectors (approx.) satisfy an equation of the form
—1y1 + · · ·+ —5y5, i.e. are they on a common hyperplane in R5?

I No, ffmin = 0:062� 0. Hence, the hypothesis is falsified!
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#4 0.20 0.43 0.17 0.11 (0.31, 0.06, 0.07, 0.13, 0.01, 0.05)
#5 0.22 0.65 0.14 0.26 (0.39, 0.09, 0.09, 0.26, 0.07, 0.05)
#6 0.31 0.66 0.76 0.32 (0.39, 0.12, 0.50, 0.26, 0.10, 0.30)
#7 0.25 0.47 0.24 0.53 (0.86, 0.21, 0.11, 0.40, 0.28, 0.21)
#8 0.17 0.72 0.51 0.01 (0.29, 0.05, 0.37, 0.21, 0.00, 0.15)
#9 0.48 0.81 0.23 0.51 (0.39, 0.19, 0.19, 0.31, 0.26, 0.09)

(Fictitious data for illustration purposes only.)

I Check: Do the vectors (approx.) satisfy an equation of the form
—1y1 + · · ·+ —5y5, i.e. are they on a common hyperplane in R5?

I No, ffmin = 0:062� 0. Hence, the hypothesis is falsified!
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Practical problems with Gröbner bases in CRNT

I Don’t take into account the fact that we’re only interested in
non-negative real solutions to the steady state equations.

I Makes it harder to draw conclusions from the Gröbner basis (e.g. about
the number of steady states).

I We miss out on equations that could have been used for model
discrimination.

I Gröbner bases for systems with many variables take a long time to
compute.

I The last few years, new methods for computing Gröbner bases for
reaction networks have been proposed, that make use of intermediates
to reduce the computation times:

A. Sadeghimanesh and E. Feliu, Gröbner Bases of Reaction Networks with
Intermediate Species, Adv. Appl. Math. 107 (2019): 74–101.
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Summary
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Bonus: A classical theorem in reaction networks theory
The deficiency zero theorem (Horn, Jackson, Feinberg, 1970’s)

Let N be a reaction network with the following properties:

1 The network is weakly reversible (for every reaction we can find a sequence of
reactions from the products leading back to the reactants).

2 The so-called deficiency ‹ ..= m − ‘− s equals zero.

Here, m denotes the
number of complexes in the network, ‘ the number of connected components,
and s the number of “chemical degrees of freedom”.

Then, for every choice of rate constants and every choice of total concentrations,
there will be a unique and locally (conjecturally: globally) attracting steady state.

Recent paper about the interpretation of ‹: arxiv.org/abs/2008.11468.
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Bonus: A little bit of elimination theory

Consider a system of polynomial equations

8><>:
f1(x; y ; z; w) = 0
.
.
.

fm(x; y ; z; w) = 0 :

Problem: Find all polynomial relations that are satisfied by all positive
solutions and that involves only some of the variables (say x and y).

This is a very hard problem! Gröbner bases give a partial solution.

The elimination theorem (see Chapter 3 in [CLO15])

Let G be a Gröbner basis of 〈f1; : : : ; fm〉 with respect to the lexiographic
ordering z > w > x > y .Then the set G ∩ R[x; y ] contains the building
blocks for all polynomial relations that involves only the variables x and y
that can be obtained as polynomial linear combinations of f1; : : : ; fm.

Note: All such relations are satisfied by all positive solutions to the system!
But – there might be relations that can’t be be obtained in this way!
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Let G be a Gröbner basis of 〈f1; : : : ; fm〉 with respect to the lexiographic
ordering z > w > x > y .Then the set G ∩ R[x; y ] contains the building
blocks for all polynomial relations that involves only the variables x and y

that can be obtained as polynomial linear combinations of f1; : : : ; fm.

Note: All such relations are satisfied by all positive solutions to the system!
But – there might be relations that can’t be be obtained in this way!

Oskar Henriksson Gröbner bases and reaction networks September 6, 2020 29 / 27



Bonus: A little bit of elimination theory

Consider a system of polynomial equations

8><>:
f1(x; y ; z; w) = 0
.
.
.

fm(x; y ; z; w) = 0 :

Problem: Find all polynomial relations that are satisfied by all positive
solutions and that involves only some of the variables (say x and y).

This is a very hard problem! Gröbner bases give a partial solution.

The elimination theorem (see Chapter 3 in [CLO15])
Let G be a Gröbner basis of 〈f1; : : : ; fm〉 with respect to the lexiographic
ordering z > w > x > y .Then the set G ∩ R[x; y ] contains the building
blocks for all polynomial relations that involves only the variables x and y
that can be obtained as polynomial linear combinations of f1; : : : ; fm.

Note: All such relations are satisfied by all positive solutions to the system!
But – there might be relations that can’t be be obtained in this way!

Oskar Henriksson Gröbner bases and reaction networks September 6, 2020 29 / 27



Bonus: A little bit of elimination theory

Consider a system of polynomial equations

8><>:
f1(x; y ; z; w) = 0
.
.
.

fm(x; y ; z; w) = 0 :

Problem: Find all polynomial relations that are satisfied by all positive
solutions and that involves only some of the variables (say x and y).

This is a very hard problem! Gröbner bases give a partial solution.

The elimination theorem (see Chapter 3 in [CLO15])
Let G be a Gröbner basis of 〈f1; : : : ; fm〉 with respect to the lexiographic
ordering z > w > x > y .Then the set G ∩ R[x; y ] contains the building
blocks for all polynomial relations that involves only the variables x and y
that can be obtained as polynomial linear combinations of f1; : : : ; fm.

Note: All such relations are satisfied by all positive solutions to the system!

But – there might be relations that can’t be be obtained in this way!

Oskar Henriksson Gröbner bases and reaction networks September 6, 2020 29 / 27



Bonus: A little bit of elimination theory

Consider a system of polynomial equations

8><>:
f1(x; y ; z; w) = 0
.
.
.

fm(x; y ; z; w) = 0 :

Problem: Find all polynomial relations that are satisfied by all positive
solutions and that involves only some of the variables (say x and y).

This is a very hard problem! Gröbner bases give a partial solution.

The elimination theorem (see Chapter 3 in [CLO15])
Let G be a Gröbner basis of 〈f1; : : : ; fm〉 with respect to the lexiographic
ordering z > w > x > y .Then the set G ∩ R[x; y ] contains the building
blocks for all polynomial relations that involves only the variables x and y
that can be obtained as polynomial linear combinations of f1; : : : ; fm.

Note: All such relations are satisfied by all positive solutions to the system!
But – there might be relations that can’t be be obtained in this way!

Oskar Henriksson Gröbner bases and reaction networks September 6, 2020 29 / 27



Examples of what might go wrong

(
x2 − x + 1− y2 = 0

y2 − x = 0(
x2 − 2x + 1 = 0

y2 − x = 0

The relation x − 1 = 0
is not detected!

(
x2 − y2 = 0

x2 + y2 − 1 = 0(
x2 − y2 = 0

2x2 − 1 = 0

The relation x −
√
2 = 0

is not detected!
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