Gröbner bases in the study of chemical reaction networks

- What role can algebra play in the biochemistry of the future?

Gröbner bases in the study of chemical reaction networks

- What role can algebra play in the biochemistry of the future?

Agenda

Agenda

1 Chemical reaction networks

Agenda

1 Chemical reaction networks
2 Gröbner bases

Agenda

1 Chemical reaction networks
2 Gröbner bases
3 A promising example

Agenda

1 Chemical reaction networks
2 Gröbner bases
3 A promising example
4 Practical problems

What is a reaction network?

What is a reaction network?

- A network of interconnected reactions:

What is a reaction network?

- A network of interconnected reactions:

$$
\begin{gathered}
\mathrm{O}_{3} \stackrel{k_{1}}{\rightleftharpoons} \mathrm{O}+\mathrm{O}_{2} \\
\mathrm{O}+\mathrm{O}_{3} \xrightarrow{k_{3}} 2 \mathrm{O}_{2}
\end{gathered}
$$

What is a reaction network?

- A network of interconnected reactions:

$$
\begin{gathered}
\mathrm{O}_{3} \stackrel{k_{1}}{\stackrel{k_{2}}{\rightleftharpoons}} \mathrm{O}+\mathrm{O}_{2} \\
\mathrm{O}+\mathrm{O}_{3} \xrightarrow{k_{3}} 2 \mathrm{O}_{2}
\end{gathered}
$$

- ...that gives rise to a system of differential equations under mass action kinetics:

What is a reaction network?

- A network of interconnected reactions:

$$
\begin{gathered}
\mathrm{O}_{3} \stackrel{k_{1}}{\stackrel{k_{1}}{\rightleftharpoons}} \mathrm{O}+\mathrm{O}_{2} \\
\mathrm{O}+\mathrm{O}_{3} \xrightarrow{k_{3}} 2 \mathrm{O}_{2}
\end{gathered}
$$

- ...that gives rise to a system of differential equations under mass action kinetics:

$$
\begin{aligned}
\frac{d}{d t}[\mathrm{O}] & =k_{1}\left[\mathrm{O}_{3}\right]-k_{2}[\mathrm{O}]\left[\mathrm{O}_{2}\right]-k_{3}[\mathrm{O}]\left[\mathrm{O}_{3}\right] \\
\frac{d}{d t}\left[\mathrm{O}_{2}\right] & =k_{1}\left[\mathrm{O}_{3}\right]-k_{2}[\mathrm{O}]\left[\mathrm{O}_{2}\right]+2 k_{3}[\mathrm{O}]\left[\mathrm{O}_{3}\right] \\
\frac{\mathrm{d}}{\mathrm{~d} t}\left[\mathrm{O}_{3}\right] & =-k_{1}\left[\mathrm{O}_{3}\right]+k_{2}[\mathrm{O}]\left[\mathrm{O}_{2}\right]-k_{3}[\mathrm{O}]\left[\mathrm{O}_{3}\right]
\end{aligned}
$$

What is a reaction network?

- A network of interconnected reactions:

$$
\begin{gathered}
\mathrm{O}_{3} \stackrel{k_{1}}{\stackrel{k_{1}}{\rightleftharpoons}} \mathrm{O}+\mathrm{O}_{2} \\
\mathrm{O}+\mathrm{O}_{3} \xrightarrow{k_{3}} 2 \mathrm{O}_{2}
\end{gathered}
$$

- ...that gives rise to a system of differential equations under mass action kinetics:

$$
\begin{aligned}
\frac{d}{d t}[\mathrm{O}] & =k_{1}\left[\mathrm{O}_{3}\right]-k_{2}[\mathrm{O}]\left[\mathrm{O}_{2}\right]-k_{3}[\mathrm{O}]\left[\mathrm{O}_{3}\right] \\
\frac{d}{d t}\left[\mathrm{O}_{2}\right] & =k_{1}\left[\mathrm{O}_{3}\right]-k_{2}[\mathrm{O}]\left[\mathrm{O}_{2}\right]+2 k_{3}[\mathrm{O}]\left[\mathrm{O}_{3}\right] \\
\frac{\mathrm{d}}{\mathrm{~d} t}\left[\mathrm{O}_{3}\right] & =-k_{1}\left[\mathrm{O}_{3}\right]+k_{2}[\mathrm{O}]\left[\mathrm{O}_{2}\right]-k_{3}[\mathrm{O}]\left[\mathrm{O}_{3}\right]
\end{aligned}
$$

What is a reaction network?

- A network of interconnected reactions:

$$
\begin{gathered}
\mathrm{O}_{3} \stackrel{k_{1}}{\stackrel{k_{1}}{\rightleftharpoons}} \mathrm{O}+\mathrm{O}_{2} \\
\mathrm{O}+\mathrm{O}_{3} \xrightarrow{k_{3}} 2 \mathrm{O}_{2}
\end{gathered}
$$

- ...that gives rise to a system of differential equations under mass action kinetics:

$$
\begin{aligned}
\frac{d}{d t}[\mathrm{O}] & =k_{1}\left[\mathrm{O}_{3}\right]-k_{2}[\mathrm{O}]\left[\mathrm{O}_{2}\right]-k_{3}[\mathrm{O}]\left[\mathrm{O}_{3}\right] \\
\frac{d}{d t}\left[\mathrm{O}_{2}\right] & =k_{1}\left[\mathrm{O}_{3}\right]-k_{2}[\mathrm{O}]\left[\mathrm{O}_{2}\right]+2 k_{3}[\mathrm{O}]\left[\mathrm{O}_{3}\right] \\
\frac{\mathrm{d}}{\mathrm{~d} t}\left[\mathrm{O}_{3}\right] & =-k_{1}\left[\mathrm{O}_{3}\right]+k_{2}[\mathrm{O}]\left[\mathrm{O}_{2}\right]-k_{3}[\mathrm{O}]\left[\mathrm{O}_{3}\right]
\end{aligned}
$$

What is a reaction network?

- A network of interconnected reactions:

$$
\begin{gathered}
\mathrm{O}_{3} \stackrel{k_{1}}{\stackrel{k_{1}}{\rightleftharpoons}} \mathrm{O}+\mathrm{O}_{2} \\
\mathrm{O}+\mathrm{O}_{3} \xrightarrow{k_{3}} 2 \mathrm{O}_{2}
\end{gathered}
$$

- ...that gives rise to a system of differential equations under mass action kinetics:

$$
\begin{aligned}
\frac{d}{d t}[\mathrm{O}] & =k_{1}\left[\mathrm{O}_{3}\right]-k_{2}[\mathrm{O}]\left[\mathrm{O}_{2}\right]-k_{3}[\mathrm{O}]\left[\mathrm{O}_{3}\right] \\
\frac{d}{d t}\left[\mathrm{O}_{2}\right] & =k_{1}\left[\mathrm{O}_{3}\right]-k_{2}[\mathrm{O}]\left[\mathrm{O}_{2}\right]+2 k_{3}[\mathrm{O}]\left[\mathrm{O}_{3}\right] \\
\frac{\mathrm{d}}{\mathrm{~d} t}\left[\mathrm{O}_{3}\right] & =-k_{1}\left[\mathrm{O}_{3}\right]+k_{2}[\mathrm{O}]\left[\mathrm{O}_{2}\right]-k_{3}[\mathrm{O}]\left[\mathrm{O}_{3}\right]
\end{aligned}
$$

Not just chemistry!

Not just chemistry!

Description	Reaction	Parameter value
Generation of new CD4+T cells	$\emptyset \xrightarrow{s_{1}} T$	10
Generation of new macrophages	$\emptyset \xrightarrow{s_{2}} M$	1.5×10^{-1}
Proliferation of T cells by presence of pathogen	$T+V \xrightarrow{k_{1}}(T+V)+T$	2×10^{-3}
Infection of T cells by HIV	$T+V \xrightarrow{k_{2}} T_{i}$	3×10^{-3}
Proliferation of M by presence of pathogen	$M+V \xrightarrow{k_{3}}(M+V)+M$	7.45×10^{-4}
Infection of M by HIV	$M+V \xrightarrow{k_{4}} M_{i}$	5.22×10^{-4}
Proliferation of HIV within CD4+T cell	$T_{i} \xrightarrow{k_{5}} V+T_{i}$	5.37×10^{-1}
Proliferation of HIV within macrophage	$M_{i} \xrightarrow{k_{6}} V+M_{i}$	2.85×10^{-1}
Natural death of CD4+T cells	$T \xrightarrow{\delta_{1}} \emptyset$	0.01
Natural death of infected T cells	$T_{i} \xrightarrow{\delta_{2}} \emptyset$	0.44
Natural death of macrophages	$M \xrightarrow{\delta_{3}} \emptyset$	6.6×10^{-3}
Natural death of infected macrophages	$M_{i} \xrightarrow{\delta_{4}} \emptyset$	6.6×10^{-3}
Natural death of HIV	$V \xrightarrow{\delta_{5}} \emptyset$	3

Not just chemistry!

Description	Reaction	Parameter value
Generation of new CD4+T cells	$\emptyset \xrightarrow{s_{1}} T$	10
Generation of new macrophages	$\emptyset \xrightarrow{s_{2}} M$	1.5×10^{-1}
Proliferation of T cells by presence of pathogen	$T+V \xrightarrow{k_{1}}(T+V)+T$	2×10^{-3}
Infection of T cells by HIV	$T+V \xrightarrow{k_{2}} T_{i}$	3×10^{-3}
Proliferation of M by presence of pathogen	$M+V \xrightarrow{k_{3}}(M+V)+M$	7.45×10^{-4}
Infection of M by HIV	$M+V \xrightarrow{k_{4}} M_{i}$	5.22×10^{-4}
Proliferation of HIV within CD4+T cell	$T_{i} \xrightarrow{k_{5}} V+T_{i}$	5.37×10^{-1}
Proliferation of HIV within macrophage	$M_{i} \xrightarrow{k_{0}} V+M_{i}$	2.85×10^{-1}
Natural death of CD4+T cells	$T \xrightarrow{\delta_{1}} \emptyset$	0.01
Natural death of infected T cells	$T_{i} \xrightarrow{\delta_{2}} \emptyset$	0.44
Natural death of macrophages	$M \xrightarrow{\delta_{3}} \emptyset$	6.6×10^{-3}
Natural death of infected macrophages	$M_{i} \xrightarrow{\delta_{4}} \emptyset$	6.6×10^{-3}
Natural death of HIV	$V \xrightarrow{\delta_{5}} \emptyset$	3

$$
\begin{aligned}
{[T]^{\prime} } & =s_{1}+k_{1}[T][V]-k_{2}[T][V]-\delta_{1}[T] \\
{\left[T_{i}\right]^{\prime} } & =k_{2}[T][V]-\delta_{2}\left[T_{i}\right] \\
{[M]^{\prime} } & =s_{2}+k_{3}[M][V]-k_{4}[M][V]-\delta_{3}[M] \\
{\left[M_{i}\right]^{\prime} } & =k_{4}[M][V]-\delta_{4}\left[M_{i}\right] \\
{[V]^{\prime} } & =k_{5}\left[T_{i}\right]+k_{6}\left[M_{i}\right]-\delta_{5}[V]
\end{aligned}
$$

An example from the news!

An example from the news!

$$
\begin{aligned}
A+B & \xrightarrow{\beta} 2 B \\
B & \xrightarrow{\gamma} C
\end{aligned}
$$

An example from the news!

$$
\begin{aligned}
A+B & \xrightarrow{\beta} 2 B \\
B & \xrightarrow{\gamma} C
\end{aligned}
$$

$$
\begin{aligned}
& {[\mathrm{A}]^{\prime}=-\beta[\mathrm{A}][\mathrm{B}]} \\
& {[\mathrm{B}]^{\prime}=\beta[\mathrm{A}][\mathrm{B}]-\gamma[\mathrm{B}]} \\
& {[\mathrm{C}]^{\prime}=\gamma[\mathrm{B}]}
\end{aligned}
$$

An example from the news!

$$
\begin{aligned}
& \mathrm{S}+\mathrm{I} \xrightarrow{\beta} 2 \mathrm{I} \\
& \mathrm{I} \xrightarrow{\gamma} \mathrm{R}
\end{aligned}
$$

$$
\begin{aligned}
& {[\mathrm{S}]^{\prime}=-\beta[\mathrm{S}][\mathrm{I}]} \\
& {[\mathrm{I}]^{\prime}=\beta[\mathrm{S}][\mathrm{I}]-\gamma[\mathrm{I}]} \\
& {[\mathrm{R}]^{\prime}=\gamma[\mathrm{I}]}
\end{aligned}
$$

The dynamics of reaction networks

The dynamics of reaction networks What happens when $t \rightarrow \infty$?

The Selkov model for glycolysis

The Selkov model for glycolysis

$$
\begin{gathered}
\mathrm{X} \xrightarrow{1} \varnothing \\
2 \mathrm{X}+\mathrm{Y} \xrightarrow{1} 3 \mathrm{X} \\
\varnothing \xrightarrow{b} \mathrm{Y} \xrightarrow{a} \mathrm{X}
\end{gathered}
$$

The Selkov model for glycolysis

$$
\begin{gathered}
\mathrm{X} \xrightarrow{1} \varnothing \\
2 \mathrm{X}+\mathrm{Y} \xrightarrow{1} 3 \mathrm{X} \\
\varnothing \xrightarrow{b} \mathrm{Y} \xrightarrow{a} \mathrm{X}
\end{gathered}
$$

The Selkov model for glycolysis

$$
\begin{gathered}
X \xrightarrow{1} \varnothing \\
2 X+Y \xrightarrow{1} 3 X \\
\varnothing \xrightarrow{b} Y \xrightarrow{a} X
\end{gathered}
$$

A network with multistability

A network with multistability

$$
\begin{aligned}
& X+Y \xrightarrow{1} X \underset{1}{\stackrel{a}{\rightleftharpoons}} 2 X \\
& X+Y \xrightarrow{2} Y \underset{1}{\stackrel{b}{\rightleftharpoons}} 2 Y
\end{aligned}
$$

A network with multistability

$$
\begin{aligned}
& \mathrm{X}+\mathrm{Y} \xrightarrow{1} \mathrm{X} \underset{1}{\stackrel{a}{\rightleftharpoons}} 2 \mathrm{X} \\
& \mathrm{X}+\mathrm{Y} \xrightarrow{2} \mathrm{Y} \stackrel{b}{\stackrel{b}{\rightleftharpoons}} 2 \mathrm{Y}
\end{aligned}
$$

A network with multistability

$$
\begin{aligned}
& \mathrm{X}+\mathrm{Y} \xrightarrow{1} \mathrm{X} \underset{1}{\stackrel{a}{\rightleftharpoons}} 2 \mathrm{X} \\
& \mathrm{X}+\mathrm{Y} \xrightarrow{2} \mathrm{Y} \stackrel{b}{\stackrel{b}{\rightleftharpoons}} 2 \mathrm{Y}
\end{aligned}
$$

A network with multistability

$$
\begin{aligned}
& \mathrm{X}+\mathrm{Y} \xrightarrow{1} \mathrm{X} \underset{1}{\stackrel{a}{\rightleftharpoons}} 2 \mathrm{X} \\
& \mathrm{X}+\mathrm{Y} \xrightarrow{2} \mathrm{Y} \stackrel{b}{\underset{1}{\rightleftharpoons}} 2 \mathrm{Y}
\end{aligned}
$$

$$
\begin{gathered}
{[\mathrm{X}]^{\prime}=a[\mathrm{X}]-[\mathrm{X}]^{2}-2[\mathrm{X}][\mathrm{Y}]} \\
{[\mathrm{Y}]^{\prime}=b[\mathrm{Y}]-[\mathrm{Y}]^{2}-[\mathrm{X}][\mathrm{Y}]}
\end{gathered}
$$

A network with multistability

$$
\begin{aligned}
& X+Y \xrightarrow{1} X \underset{1}{\stackrel{a}{\rightleftharpoons}} 2 X \\
& X+Y \xrightarrow{2} Y \underset{1}{\stackrel{b}{\rightleftharpoons}} 2 Y \\
& 0=a[X]-[X]^{2}-2[X][Y] \\
& 0=b[Y]-[Y]^{2}-[X][Y]
\end{aligned}
$$

The long-term goal

The long-term goal

The long-term goal

Possible applications:

- Planning in synthetic biology

The long-term goal

Possible applications:

- Planning in synthetic biology
- Hypothesis testing in systems biology

The problem?

The problem?

Unknown rate constants!

The problem?

Unknown rate constants!

Forces us to work algebraically och symbolically.

The problem?

Unknown rate constants!

Forces us to work algebraically och symbolically.

Gröbner bases:

Gröbner bases:

A method for rewriting a system of polynomial equations in a smart way

Gaussian elimination:

A method for rewriting a system of linear equations in a smart way

Example

$$
x>y
$$

$$
\begin{aligned}
& 2 x+6 y=-6 \\
& 5 x+2 y=11
\end{aligned}
$$

Example

$$
x>y
$$

$$
\begin{aligned}
& 2 x+6 y=-6 \\
& 5 x+2 y=11
\end{aligned}
$$

Example

$$
\begin{aligned}
& 2 x+6 y=-6 \\
& 5 x+2 y=11
\end{aligned}
$$

$$
\begin{aligned}
5 \cdot(2 x+6 y y) & =5 \cdot(-6) \\
2 \cdot(5 x+2 y) & =2 \cdot 11
\end{aligned}
$$

Example

$$
\begin{aligned}
& 2 x+6 y=-6 \\
& 5 x+2 y=11
\end{aligned}
$$

$$
\begin{aligned}
10 x+30 y & =-30 \\
10 x+4 y & =22
\end{aligned}
$$

Example

$$
x>y
$$

$$
\begin{aligned}
& 2 x+6 y=-6 \\
& 5 x+2 y=11
\end{aligned}
$$

$$
\begin{aligned}
10 x+30 y & =-30 \\
-26 y & =52
\end{aligned}
$$

Example

$$
x>y
$$

$$
\begin{aligned}
& 2 x+6 y=-6 \\
& 5 x+2 y=11
\end{aligned}
$$

$$
\begin{aligned}
10 x+30 y & =-30 \\
y & =-2
\end{aligned}
$$

Example

$$
x>y
$$

$$
\begin{aligned}
& 2 x+6 y=-6 \\
& 5 x+2 y=11
\end{aligned}
$$

$$
\begin{aligned}
10 x-60 & =-30 \\
y & =-2
\end{aligned}
$$

Example

$$
x>y
$$

$$
\begin{aligned}
& 2 x+6 y=-6 \\
& 5 x+2 y=11
\end{aligned}
$$

$$
10 x=30
$$

$$
y=-2
$$

Example

$$
x>y
$$

$$
\begin{aligned}
& 2 x+6 y=-6 \\
& 5 x+2 y=11
\end{aligned}
$$

$$
x=3
$$

$$
y=-2
$$

Example

$$
\begin{aligned}
& 2 x+6 y=-6 \\
& 5 x+2 y=11
\end{aligned}
$$

$$
\begin{aligned}
& x=3 \\
& y=-2
\end{aligned}
$$

Put differently: We knocked out the rows against each other!

$$
S=5 \cdot(2 x+6 y+6)-2 \cdot(5 x+2 y-11)=26 y+52
$$

A polynomial example

$$
x>y \text { (lex) }
$$

$$
\begin{array}{r}
x^{2}+2 x y^{2}=0 \\
x y+2 y^{3}-1=0
\end{array}
$$

A polynomial example

$$
x>y \text { (lex) }
$$

$$
\begin{array}{r}
x^{2}+2 x y^{2}=0 \\
x y+2 y^{3}-1=0
\end{array}
$$

A polynomial example

$$
\begin{aligned}
& x>y(\text { lex }) \\
x^{2}+2 x y^{2} & =0 \\
x y+2 y^{3}-1 & =0
\end{aligned}
$$

$$
S\left(f_{1}, f_{2}\right)=y\left(x^{2}+2 x y^{2}\right)-x\left(x y+2 y^{3}-1\right)=x
$$

A polynomial example

$$
x>y \text { (lex) }
$$

$$
\begin{aligned}
x^{2}+2 x y^{2} & =0 \\
x y+2 y^{3}-1 & =0 \\
x & =0
\end{aligned}
$$

$$
S\left(f_{1}, f_{2}\right)=y\left(x^{2}+2 x y^{2}\right)-x\left(x y+2 y^{3}-1\right)=x
$$

A polynomial example

$$
x>y \text { (lex) }
$$

$$
\begin{aligned}
x^{2}+2 x y^{2} & =0 \\
x y+2 y^{3}-1 & =0 \\
x & =0
\end{aligned}
$$

$$
S\left(f_{1}, f_{2}\right)=y\left(x^{2}+2 x y^{2}\right)-x\left(x y+2 y^{3}-1\right)=x
$$

A polynomial example

$$
x>y \text { (lex) }
$$

$$
\begin{aligned}
x^{2}+2 x y^{2} & =0 \\
x y+2 y^{3}-1 & =0 \\
x & =0
\end{aligned}
$$

$$
S\left(f_{1}, f_{2}\right)=y\left(x^{2}+2 x y^{2}\right)-x\left(x y+2 y^{3}-1\right)=x
$$

$$
S\left(f_{2}, f_{3}\right)=\left(x y+2 y^{3}-1\right)-y x=2 y^{3}-1
$$

A polynomial example

$$
\begin{gathered}
\quad x>y \text { (lex) } \\
x^{2}+2 x y^{2}=0 \\
x y+2 y^{3}-1=0 \\
x=0 \\
2 y^{3}-1=0 \\
S\left(f_{1}, f_{2}\right)=y\left(x^{2}+2 x y^{2}\right)-x\left(x y+2 y^{3}-1\right)=x \\
S\left(f_{2}, f_{3}\right)=\left(x y+2 y^{3}-1\right)-y x=2 y^{3}-1
\end{gathered}
$$

A polynomial example

$$
\begin{aligned}
& x>y(\text { lex }) \\
x^{2}+2 x y^{2} & =0 \\
x y+2 y^{3}-1 & =0 \\
x & =0 \\
2 y^{3}-1 & =0
\end{aligned}
$$

$$
S\left(f_{1}, f_{2}\right)=y\left(x^{2}+2 x y^{2}\right)-x\left(x y+2 y^{3}-1\right)=x
$$

$$
S\left(f_{2}, f_{3}\right)=\left(x y+2 y^{3}-1\right)-y x=2 y^{3}-1
$$

The Buchberger algorithm

The Buchberger algorithm

Input: $\mathcal{F}=\left\{f_{1}, \ldots, f_{m}\right\}$ och an "order of prioritization" for the variables.

The Buchberger algorithm

Input: $\mathcal{F}=\left\{f_{1}, \ldots, f_{m}\right\}$ och an "order of prioritization" for the variables.
Output: $\mathcal{G}=\left\{g_{1}, \ldots, g_{r}\right\}$.

The Buchberger algorithm

Input: $\mathcal{F}=\left\{f_{1}, \ldots, f_{m}\right\}$ och an "order of prioritization" for the variables.
Output: $\mathcal{G}=\left\{g_{1}, \ldots, g_{r}\right\}$.
1 Let $\mathcal{G}:=\mathcal{F}$.

The Buchberger algorithm

Input: $\mathcal{F}=\left\{f_{1}, \ldots, f_{m}\right\}$ och an "order of prioritization" for the variables.
Output: $\mathcal{G}=\left\{g_{1}, \ldots, g_{r}\right\}$.
1 Let $\mathcal{G}:=\mathcal{F}$.
2 Pick a pair $p, q \in G$.

The Buchberger algorithm

Input: $\mathcal{F}=\left\{f_{1}, \ldots, f_{m}\right\}$ och an "order of prioritization" for the variables.
Output: $\mathcal{G}=\left\{g_{1}, \ldots, g_{r}\right\}$.
1 Let $\mathcal{G}:=\mathcal{F}$.
2 Pick a pair $p, q \in G$.
3 Identify the leading terms and "knock them out" by setting $S=\sigma p+\tau q$ for appropriate polynomials σ and τ.

The Buchberger algorithm

Input: $\mathcal{F}=\left\{f_{1}, \ldots, f_{m}\right\}$ och an "order of prioritization" for the variables.
Output: $\mathcal{G}=\left\{g_{1}, \ldots, g_{r}\right\}$.
1 Let $\mathcal{G}:=\mathcal{F}$.
2 Pick a pair $p, q \in G$.
3 Identify the leading terms and "knock them out" by setting $S=\sigma p+\tau q$ for appropriate polynomials σ and τ.

4 Reduce S with respect to the other elements in \mathcal{G}. If there is a remainder (i.e. S "contributes something new"), then add it to \mathcal{G}.

The Buchberger algorithm

Input: $\mathcal{F}=\left\{f_{1}, \ldots, f_{m}\right\}$ och an "order of prioritization" for the variables.
Output: $\mathcal{G}=\left\{g_{1}, \ldots, g_{r}\right\}$.
1 Let $\mathcal{G}:=\mathcal{F}$.
2 Pick a pair $p, q \in G$.
3 Identify the leading terms and "knock them out" by setting $S=\sigma p+\tau q$ for appropriate polynomials σ and τ.

4 Reduce S with respect to the other elements in \mathcal{G}. If there is a remainder (i.e. S "contributes something new"), then add it to \mathcal{G}.

5 Go back to Step 2.

The Buchberger algorithm

Input: $\mathcal{F}=\left\{f_{1}, \ldots, f_{m}\right\}$ och an "order of prioritization" for the variables.
Output: $\mathcal{G}=\left\{g_{1}, \ldots, g_{r}\right\}$.
1 Let $\mathcal{G}:=\mathcal{F}$.
2 Pick a pair $p, q \in G$.
3 Identify the leading terms and "knock them out" by setting $S=\sigma p+\tau q$ for appropriate polynomials σ and τ.

4 Reduce S with respect to the other elements in \mathcal{G}. If there is a remainder (i.e. S "contributes something new"), then add it to \mathcal{G}.

5 Go back to Step 2.
6 Keep going until all possible pairs of polynomials in \mathcal{G} (including newcommers) have been investigated.

The Buchberger algorithm

Input: $\mathcal{F}=\left\{f_{1}, \ldots, f_{m}\right\}$ och an "order of prioritization" for the variables.
Output: $\mathcal{G}=\left\{g_{1}, \ldots, g_{r}\right\}$.
1 Let $\mathcal{G}:=\mathcal{F}$.
\simeq Pick a pair $p, q \in G$.
3 Identify the leading terms and "knock them out" by setting $S=\sigma p+\tau q$ for appropriate polynomials σ and τ.

4 Reduce S with respect to the other elements in \mathcal{G}. If there is a remainder (i.e. S "contributes something new"), then add it to \mathcal{G}.

5 Go back to Step 2.
6 Keep going until all possible pairs of polynomials in \mathcal{G} (including newcommers) have been investigated.

7 Clean up \mathcal{G}.

Example

$$
x>y>z \text { (lex) }
$$

$$
\begin{aligned}
x^{2}+y^{2}+z^{2}-4 & =0 \\
x^{2}+2 y^{2}-5 & =0 \\
x z-1 & =0
\end{aligned}
$$

Example

$$
x>y>z \text { (lex) }
$$

$$
\begin{array}{r}
x^{2}+y^{2}+z^{2}-4=0 \\
x^{2}+2 y^{2}-5=0 \\
x z-1=0
\end{array}
$$

$$
\begin{array}{r}
x-3 z+2 z^{3}=0 \\
y^{2}-z^{2}-1=0 \\
2 z^{4}-3 z^{2}+1=0
\end{array}
$$

Example

$$
\begin{aligned}
& x>y>z(\text { lex }) \\
& x^{2}+y^{2}+z^{2}-4=0 \\
& x^{2}+2 y^{2}-5=0 \\
& x z-1=0 \\
& \\
& x-3 z+2 z^{3}=0 \\
& y^{2}-z^{2}-1=0 \\
& 2 z^{4}-3 z^{2}+1=0
\end{aligned}
$$

In total: 8 solutions!

Example

Example

$$
\begin{array}{r}
a x-x^{2}-2 x y=0 \\
b y-y^{2}-x y=0
\end{array}
$$

Example

$$
\begin{array}{r}
a x-x^{2}-2 x y=0 \\
b y-y^{2}-x y=0
\end{array}
$$

$$
b y+x y+y^{2}=0
$$

$$
-a x+2 b y+x^{2}-2 y^{2}=0
$$

$$
y^{3}-a y^{2}+\left(a b-b^{2}\right) y=0
$$

Example

$$
\begin{array}{r}
a x-x^{2}-2 x y=0 \\
b y-y^{2}-x y=0
\end{array}
$$

$$
b y+x y+y^{2}=0
$$

$$
-a x+2 b y+x^{2}-2 y^{2}=0
$$

$$
y(b-y)(-b+a-y)=0
$$

Example

$$
\begin{array}{r}
a x-x^{2}-2 x y=0 \\
b y-y^{2}-x y=0
\end{array}
$$

$$
b y+x y+y^{2}=0
$$

$$
-a x+2 b y+x^{2}-2 y^{2}=0
$$

$$
y(b-y)(-b+a-y)=0
$$

Solutions: $(0,0),(0, b),(a, 0),(-a+2 b, a-b)$.

A promising example from the literature:

A promising example from the literature: Biochemical hypothesis testing

Phosphorylation/dephosphorylation

Phosphorylation/dephosphorylation

(s)

Phosphorylation/dephosphorylation

Phosphorylation/dephosphorylation

Phosphorylation/dephosphorylation

Phosphorylation/dephosphorylation

Phosphorylation/dephosphorylation

Double phosphorylation

Double phosphorylation

$$
\mathrm{K}+\mathrm{S}_{00} \underset{b_{00}}{\mathrm{a}_{00}} \mathrm{KS}_{00}\left\{\begin{array}{l}
\stackrel{c_{00,01}}{ } \mathrm{~K}+\mathrm{S}_{01} \\
\xrightarrow{c_{00,10}} \mathrm{~K}+\mathrm{S}_{10}
\end{array}\right.
$$

Double phosphorylation

$$
\begin{aligned}
& \mathrm{K}+\mathrm{S}_{00} \underset{b_{00}}{\stackrel{a_{00}}{2}} \mathrm{KS}_{00}\left\{\begin{array}{l}
\xrightarrow{\stackrel{c_{00,01}}{c_{00,10}} \mathrm{~K}+\mathrm{S}_{01}} \mathrm{~K}+\mathrm{S}_{10}
\end{array}\right. \\
& \mathrm{K}+\mathrm{S}_{01} \stackrel{a_{01}}{\underset{b_{01}}{ }} \mathrm{KS}_{01} \xrightarrow{\mathrm{c}_{01,11}} \mathrm{~K}+\mathrm{S}_{11}
\end{aligned}
$$

Double phosphorylation

$$
\begin{aligned}
& \mathrm{K}+\mathrm{S}_{00} \xlongequal[b_{00}]{\stackrel{a_{00}}{\rightleftharpoons}} \mathrm{KS}_{00}\left\{\begin{array}{l}
\stackrel{c_{00,01}}{\xrightarrow{c_{00,10}} \mathrm{~K}+\mathrm{S}_{01}} \mathrm{~K}+\mathrm{S}_{10}
\end{array}\right. \\
& \mathrm{K}+\mathrm{S}_{01} \stackrel{a_{b_{01}}}{a_{01}} \mathrm{KS}_{01} \xrightarrow{c_{01,11}} \mathrm{~K}+\mathrm{S}_{11} \\
& \mathrm{~K}+\mathrm{S}_{10} \xlongequal[b_{10}]{a_{10}} \mathrm{KS}_{10} \xrightarrow{c_{10,11}} \mathrm{~K}+\mathrm{S}_{11}
\end{aligned}
$$

Double phosphorylation

$$
\begin{aligned}
& \mathrm{K}+\mathrm{S}_{00} \xlongequal[b_{00}]{\stackrel{a_{00}}{\rightleftharpoons}} \mathrm{KS}_{00}\left\{\begin{array}{l}
\stackrel{c_{00,01}}{\xrightarrow{c_{00,10}} \mathrm{~K}+\mathrm{S}_{01}} \mathrm{~K}+\mathrm{S}_{10}
\end{array}\right. \\
& \mathrm{K}+\mathrm{S}_{01} \stackrel{\mathrm{a}_{01}}{\mathrm{a}_{01}} \mathrm{KS}_{01} \xrightarrow{c_{01,11}} \mathrm{~K}+\mathrm{S}_{11} \\
& \mathrm{~K}+\mathrm{S}_{10} \xlongequal[b_{10}]{a_{10}} \mathrm{KS}_{10} \xrightarrow{c_{10,11}} \mathrm{~K}+\mathrm{S}_{11} \\
& \mathrm{~F}+\mathrm{S}_{01} \xlongequal[\beta_{01}]{\alpha_{01}} \mathrm{FS}_{01} \xrightarrow{\gamma_{01,00}} \mathrm{~F}+\mathrm{S}_{00} \\
& \mathrm{~F}+\mathrm{S}_{10} \xlongequal[\beta_{10}]{\alpha_{10}} \mathrm{FS}_{10} \xrightarrow{\gamma_{10,00}} \mathrm{~F}+\mathrm{S}_{00} \\
& \mathrm{~F}+\mathrm{S}_{11} \xlongequal[\beta_{11}]{\alpha_{11}} \mathrm{FS}_{11}\left\{\begin{array}{l}
\xrightarrow[\gamma_{11,01}]{\gamma_{11,10}} \mathrm{~F}+\mathrm{S}_{01} \\
\mathrm{~F}+\mathrm{S}_{10}
\end{array}\right.
\end{aligned}
$$

Double phosphorylation

$$
\begin{aligned}
& \mathrm{K}+\mathrm{S}_{00} \underset{b_{00}}{\stackrel{a_{00}}{\rightleftharpoons}} \mathrm{KS}_{00}\left\{\begin{array}{l}
\stackrel{c_{00,01}}{\xrightarrow{c_{00,10}} \mathrm{~K}+\mathrm{S}_{01}} \mathrm{~K}+\mathrm{S}_{10} \\
\mathrm{~K}+\mathrm{S}_{01} \\
\stackrel{c_{00,11}}{a_{b_{01}}} \mathrm{~K}+\mathrm{S}_{11}
\end{array} \mathrm{KS}_{01} \xrightarrow{c_{01,11}} \mathrm{~K}+\mathrm{S}_{11}\right.
\end{aligned}
$$

Differential equations

```
dK/dt =
-a00*K*SOO + b00*KSOO + c0001*KSOO +
c0010*KS00 -a01*K*S01 + b01*KSO1 + c0111*KS01
-a10*K*S10 + b10*KS10 + c1011*KS10
+ c0011*KS00
dF/dt =
-alpha01*F*S01 + beta01*FS01 + gamma0100*FS01
-alpha10*F*S10 + beta10*FS10 + gamma1000*FS10
-alpha11*F*S11 + beta11*FS11 + gamma1101*FS11
+ gamma1110*FS11
dS00/dt =
-a00*K*SOO + b00*KSOO + gamma0100*FSO1 +
gamma1000*FS10
dS01/dt =
-a01*K*S01 + b01*KS01 - alpha01*F*S01 +
beta01*FS01 + c0001*KS00 + gamma1101*FS11
dS10/dt =
-a10*K*S10 + b10*KS10 - alpha10*F*S10 +
beta10*FS10 + c0010*KS00 + gamma1110*FS11
```

```
dS11/dt =
-alpha11*F*S11 + beta11*FS11 + c0111*KS01 +
c1011*KS10 + c0011*KS00
dKS00/dt =
a00*K*S00 - b00*KSOO - c0001*KS00 - c0010*KS00
- c0011*KS00
dKS01/dt =
a01*K*S01 - b01*KS01 - c0111*KS01
dKS10/dt =
a10*K*S10 - b10*KS10 - c1011*KS10
dFS01/dt =
alpha01*F*S01 - beta01*FS01 - gamma0100*FS01
dFS10/dt =
alpha10*F*S10 - beta10*FS10 - gamma1000*FS10
dFS11/dt =
alpha11*F*S11 - beta11*FS11 - gamma1101*FS11 -
gamma1110*FS11
```


Steady state equations

```
0=
-a00*K*S00 + b00*KS00 + c0001*KSOO +
c0010*KS00 -a01*K*S01 + b01*KS01 + c0111*KS01
-a10*K*S10 + b10*KS10 + c1011*KS10
+ c0011*KS00
0 =
-alpha01*F*S01 + beta01*FS01 + gamma0100*FS01
-alpha10*F*S10 + beta10*FS10 + gamma1000*FS10
-alpha11*F*S11 + beta11*FS11 + gamma1101*FS11
+ gamma1110*FS11
0=
-a00*K*S00 + b00*KS00 + gamma0100*FS01 +
gamma1000*FS10
0 =
-a01*K*S01 + b01*KS01 - alpha01*F*S01 +
beta01*FS01 + c0001*KS00 + gamma1101*FS11
0 =
-a10*K*S10 + b10*KS10 - alpha10*F*S10 +
beta10*FS10 + c0010*KS00 + gamma1110*FS11
```

```
0 =
-alpha11*F*S11 + beta11*FS11 + c0111*KS01 +
c1011*KS10 + c0011*KS00
O =
a00*K*S00 - b00*KS00 - c0001*KS00 - c0010*KSOO
- c0011*KS00
0 =
a01*K*S01 - b01*KS01 - c0111*KS01
0 =
a10*K*S10 - b10*KS10 - c1011*KS10
0 =
alpha01*F*S01 - beta01*FS01 - gamma0100*FS01
0 =
alpha10*F*S10 - beta10*FS10 - gamma1000*FS10
0 =
alpha11*F*S11 - beta11*FS11 - gamma1101*FS11 -
gamma1110*FS11
```


Steady state equations

```
O =
-a00*K*S00 + b00*KS00 + c0001*KS00 +
c0010*KS00 -a01*K*S01 + b01*KS01 + c0111*KS01
-a10*K*S10 + b10*KS10 + c1011*KS10
+ c0011*KS00
0 =
-alpha01*F*S01 + beta01*FS01 + gamma0100*FS01
-alpha10*F*S10 + beta10*FS10 + gamma1000*FS10
-alpha11*F*S11 + beta11*FS11 + gamma1101*FS11
+ gamma1110*FS11
0 =
-a00*K*S00 + b00*KS00 + gamma0100*FS01 +
gamma1000*FS10
0 =
-a01*K*S01 + b01*KS01 - alpha01*F*S01 +
beta01*FSO1 + c0001*KS00 + gamma1101*FS11
0 =
-a10*K*S10 + b10*KS10 - alpha10*F*S10 +
beta10*FS10 + c0010*KS00 + gamma1110*FS11
```

 \(0=\)
 -alpha11*F*S11 + beta11*FS11 + c0111*KS01 +
 c1011*KS10 + c0011*KS00
 $0=$
$\mathrm{a} 00 * \mathrm{~K} * \mathrm{~S} 00$ - b00*KS00 - c0001*KS00 - c0010*KS00

- c0011*KS00
a01*K*S01 - b01*KS01 - c0111*KS01
$0=$
a10*K*S10 - b10*KS10 - c1011*KS10
$0=$
alpha01*F*S01 - beta01*FS01 - gamma0100*FS01
$0=$
$0=$
alpha10*F*S10 - beta10*FS10 - gamma1000*FS10
$0=$
alpha11*F*S11 - beta11*FS11 - gamma1101*FS11 -
gamma1110*FS11

Problem: We can only measure $\left[\mathrm{S}_{00}\right],\left[\mathrm{S}_{01}\right],\left[\mathrm{S}_{10}\right]$ och $\left[\mathrm{S}_{11}\right]$.

Steady state equations

```
0 =
-a00*K*S00 + b00*KS00 + c0001*KS00 +
c0010*KS00 -a01*K*S01 + b01*KS01 + c0111*KS01
-a10*K*S10 + b10*KS10 + c1011*KS10
+ c0011*KS00
0 =
-alpha01*F*S01 + beta01*FS01 + gamma0100*FS01
-alpha10*F*S10 + beta10*FS10 + gamma1000*FS10
-alpha11*F*S11 + beta11*FS11 + gamma1101*FS11
+ gamma1110*FS11
0 =
-a00*K*S00 + b00*KS00 + gamma0100*FS01 +
gamma1000*FS10
0 =
-a01*K*S01 + b01*KS01 - alpha01*F*S01 +
beta01*FSO1 + c0001*KS00 + gamma1101*FS11
0 =
-a10*K*S10 + b10*KS10 - alpha10*F*S10 +
beta10*FS10 + c0010*KS00 + gamma1110*FS11
```

```
0 =
```

0 =
-alpha11*F*S11 + beta11*FS11 + c0111*KS01 +
-alpha11*F*S11 + beta11*FS11 + c0111*KS01 +
c1011*KS10 + c0011*KS00
c1011*KS10 + c0011*KS00
O =
O =
a00*K*S00 - b00*KS00 - c0001*KS00 - c0010*KSOO
a00*K*S00 - b00*KS00 - c0001*KS00 - c0010*KSOO

- c0011*KS00
- c0011*KS00
0 =
0 =
a01*K*S01 - b01*KS01 - c0111*KS01
a01*K*S01 - b01*KS01 - c0111*KS01
0 =
0 =
a10*K*S10 - b10*KS10 - c1011*KS10
a10*K*S10 - b10*KS10 - c1011*KS10
0 =
0 =
alpha01*F*S01 - beta01*FS01 - gamma0100*FS01
alpha01*F*S01 - beta01*FS01 - gamma0100*FS01
0 =
0 =
alpha10*F*S10 - beta10*FS10 - gamma1000*FS10
alpha10*F*S10 - beta10*FS10 - gamma1000*FS10
0 =
0 =
alpha11*F*S11 - beta11*FS11 - gamma1101*FS11 -
alpha11*F*S11 - beta11*FS11 - gamma1101*FS11 -
gamma1110*FS11

```
gamma1110*FS11
```


Problem: We can only measure $\left[\mathrm{S}_{00}\right],\left[\mathrm{S}_{01}\right],\left[\mathrm{S}_{10}\right]$ och $\left[\mathrm{S}_{11}\right]$.

Idea: Compute a Gröbner basis that eliminates variables!

Gröbner basis computation

(Model without simultaneous double phosphorylation.)

Gröbner basis computation

(Model without simultaneous double phosphorylation.)

```
In [1]: A.<a00,a01,a10,b00,b01,b10,c0001,c0010,c0111,c1011,c0011,alpha01, alpha10, alpha11, beta01, beta10, beta11, gamma0100,gamma1000,gamma1
F = A.fraction_field()
R.<KS00,KS01, KS10, FS01,FS10, FS11, K, F,S00, S01,S10,S11> = PolynomialRing(F, 12, order='lex')
In [2]: I = Ideal([-a00*K*S00 + b00*KS00 + c0001*KS00 + c0010*KS00 + c0011*KS00 -a01*K*S01 + b01*KS01 + c0111*KS01-a10*K*S10 + b10*KS10
    -alpha01*F*S01 + beta01*FS01 + gamma0100*FS01-alpha10*F*S10 + beta10*FS10 + gamma1000*FS10-alpha11*F*S11 + beta11*FS11 + gamma11
    -a00*K*S00 + b00*KS00 + gamma0100*FS01 + gamma1000*FS10,
    -a01*K*S01 + b01*KS01 - alpha01*F*S01 + beta01*FS01 + c0001*KS00 + gamma1101*FS11,
    -a10*K*S10 + b10*KS10 - alpha10*F*S10 + beta10*FS10 + c0010*KS00 + gamma1110*FS11
    -alpha11*F*S11 + beta11*FS11 + c0111*KS01 + c1011*KS10 + c0011*KS00,
a00*K*S00 - b00*KS00 - c0001*KS00 - c0010*KS00 - c0011*KS00,
a01*K*S01 - b01*KS01 - c0111*KS01,
a10*K*s10 - b10*KS10 - c1011*KS10,
alpha01*F*S01 - beta01*FS01 - gamma0100*FS01,
alpha10*F*S10 - beta10*FS10 - gamma1000*FS10,
alpha11*F*S11 - beta11*FS11 - gamma1101*FS11 - gamma1110*FS11]
)
```

In [3]: G = I.groebner_basis()

Gröbner basis computation

(Model without simultaneous double phosphorylation.)

In [4]: G[-1]
 *alpha01*beta10*gamma0100 + a10*c0111*c1011*c0011*alpha01*beta10*gamma0100 - a01*b10*c0001*c0111*alpha10*beta01*gamma1000 - a01 *c0001*c0111*c1011*alpha10*beta01*gamma1000 - a01*b10*c0111*c0011*alpha10*beta01*gamma1000 - a01*c0111*c1011*c0011*alpha10*beta 01*gamma1000 + a10*b01*c0010*c1011*alpha01*gamma0100*gamma1000 + a10*c0010*c0111*c1011*alpha01*gamma0100*gamma1000 + a10*b01*c1 011*c0011*alpha01* gamma0100*gamma1000 + a10*c0111*c1011*c0011*alpha01*gamma0100*gamma1000-a01*b10*c0001*c0111*alpha10*gamma01 $00 *$ gamma1000 - a01*c0001*c0111*c1011*alpha10*gamma0100*gamma1000-a01*b10*c0111*c0011*alpha10*gamma0100*gamma1000-a01*c0111* c1011*ce011*alpha10*gamma0100*gamma10日0)/(a01*b10*ce日10*c0111*alpha01*beta10*gamma0100 + a01*c0010*c0111*c1011*alpha01*beta10*g $a m m a 0100+a 01 * b 10 * c 001 \theta^{*} c 0111 * a l p h a 01 * g a m m a 0100^{*}$ gamma1000 + a01*c0010*c0111*c1011*alpha01*gamma0100*gamma1000))*F*S01*S10 +
((c0001*alpha11*beta01*gamma1110 + c0010*alpha11*beta01*gamma1110 + c0011*alpha11*beta01*gamma1110 + c0001*alpha11*gamma0100*ga mma1110 + c0010*alpha11*gamma0100*gamma1110 + c0011*alpha11*gamma0100*gamma1110)/(c0010*alpha01*beta11*gamma0100 + c0010*alpha0 1*gamma0100*gamma1101 + c0010*alpha01*gamma0100*gamma1110))*F*S01*S11 + ((-a10*b01*c0001*c1011*alpha10*beta01*gamma1000 - a10*c 0001*c0111*c1011*alpha10*beta01*gamma1000-a10*b01*c0001*c1011*alpha10*gamma0100*gamma1000 - a10*c0001*ce111*c1011*alpha10*gam ma0100*gamma1000)/(a01*b10*c0010*c0111*alpha01*beta10*gamma0100 + a01*c0010*c0111*c1011*alpha01*beta10*gamma0100 + a01*b10*c001 0*c0111*alpha01*gamma0100*gamma1000 + a01*c0010*c0111*c1011*alpha01*gamma0100*gamma1000)) F*S10^2 + ((-a10*b01*c0001*c1011*alph a11*beta01*gamma1101 - a10*b01*c0010*c1011*alpha11*beta01*gamma1101 - a10*c0001*c0111*c1011*alpha11*beta01*gamma1101 - a10*ce01 $0 * c 0111 * c 1011 * a l p h a 11 * b e t a 01 * g a m m a 1101-a 10 * b 01 * c 1011 * c 0011 * a 1 p h a 11 * b e t a 01 * g a m m a 1101-a 10 * c 0111^{*} c 1011 * c 0011 * a l p h a 11 * b e t a 01 * g a$ mma1101 - a10*b01*c0001*c1011*alpha11*gamma0100*gamma1101 - a10*b01*c0010*c1011*alpha11*gamma0100*gamma1101 - a10*c0001*c0111*c 1011*alpha11*gamma0100*gamma1101 - a10*c0010*c0111*c1011*alpha11*gamma0100*gamma1101 - a10*b01*c1011*c0011*alpha11*gamma0100*ga mma1101 - a10*c0111*c1011*c0011*alpha11*gamma0100*gamma1101)/(a01*b10*c0010*c0111*alpha01*beta11*gamma0100 + a01*c0010*c0111*c1 011*alpha01*beta11*gamma0100 + a01*b10*c0010*c0111*alpha01*gamma0100*gamma1101 + a01*c0010*c0111*c1011*alpha01*gamma0100*gamma1 $101+a 01 * b 10 * c 0010 * c 0111 * a l p h a 01 * g a m m a 0100^{*}$ gamma1110 + a01*c0010*c0111*c1011*alpha01*gamma0100*gamma1110))*F*S10*S11

Gröbner basis computation

(Model without simultaneous double phosphorylation.)

In [5]: $G[-2]$
Out[5]: F*S00*S10 + ((-c0010*alpha11*beta10*gamma1101 - c0010*alpha11*gamma1000*gamma1101 - c0010*alpha11*beta10*gamma1110 - c0011*alph a11*beta10*gamma1110 - c0010*alpha11*gamma1000*gamma1110 - c0011*alpha11*gamma1000*gamma1110)/(c0011*alpha10*beta11*gamma1000 + c0011*alpha10*gamma1000*gamma1101 + c0011*alpha10*gamma1000*gamma1110))*F*s00*s11 + ((a01*b00*c0111 + a01*c0001*c0111 + a01*c00 $10 * c 0111+a 01 * c 0111 * c 0011) /(a 00 * b 01 * c 0011+a 00 * c 0111 * c 0011)$)*F*s01*s10 + ((-a01*b00*c0111*alpha11*beta10*gamma1110-a01*c000 1*c0111*alpha11*beta10*gamma1110-a01*c0010*c0111*alpha11*beta10*gamma1110-a01*ce111*c0011*alpha11*beta10*gamma1110-a01*be 0*c0111*alpha11*gamma1000*gamma1110-a01*c0001*c0111*alpha11*gamma1000*gamma1110-a01*c0010*c0111*alpha11*gamma1000*gamma1110 - a01*c0111*c0011*alpha11*gamma1000*gamma1110)/(a00*b01*c0011*alpha10*beta11*gamma1000 + a00*c0111*c0011*alpha10*beta11*gamma10 $00+a 00 * b 01 * c 0011 * a l p h a 10 * g a m m a 1000 * g a m m a 1101+a 00 * c 0111 * c 0011 * a l p h a 10^{*}$ gamma1000*gamma1101 + a00*b01*c0011*alpha10*gamma1000* gamma1110 + a00*c0111*c0011*alpha10*gamma1000*gamma1110)) *F*S01*S11 + ($a 10^{*} b 00^{*} c 1011+a 10^{*} c 0001 * c 1011+a 10^{*} c 001 \theta^{*} c 1011+a 10$ *c1011*c0011)/(a00*b10*c0011 + a00*c1011*c0011))*F*S10^2 + ((a10*b00*c1011*alpha11*beta10*gamma1101 + a10*c0001*c1011*alpha11*b eta10*gamma1101 + a10*c0010*c1011*alpha11*beta10*gamma1101 + a10*c1011*c0011*alpha11*beta10*gamma1101 + a10*b00*c1011*alpha11*g amma1000*gamma1101 + a10*c0001*c1011*alpha11*gamma1000*gamma1101 + a10*c0010*c1011*alpha11*gamma1000*gamma1101 + a10*c1011*c001 1*alpha11*gamma1000*gamma1101)/(a00*b10*c0011*alpha10*beta11*gamma1000 + a00*c1011*c0011*alpha10*beta11*gamma1000 + a00*b10*c00 11*alpha10*gamma1000*gamma1101 + a00*c1011*c0011*alpha10*gamma1000*gamma1101 + a00*b10*c0011*alpha10*gamma1000*gamma1110 + a00* c1011*c0011*alpha10*gamma1000*gamma1110))*F*S10*S11

Gröbner basis computation

(Model without simultaneous double phosphorylation.)

$\mathrm{F}^{*} \mathrm{~S} 00^{*} \mathrm{~S} 11+$
((-a01*b00*c0111*alpha10*beta11*gamma1000 - a01*c0001*c0111*alpha10*beta11*gamma1000 - a01*c0010*c0111*alpha10*beta11*gamma1000 a01*b00*c0111*alpha10*gamma1000*gamma1101 - a01*c0001*c0111*alpha10*gamma1000*gamma1101 - a01*c0010*c0111*alpha10*gamma1000*gamma1101 $a 01^{*} \mathrm{~b} 00^{*} \mathrm{c} 0111^{*}$ alpha10*gamma1000*gamma1110-a01*c0001*c0111*alpha10*gamma1000*gamma1110 - a01*c0010*c0111*alpha10*gamma1000*gamma1110)/ (a00*b01*c0010*alpha11*beta10*gamma1101 + a00*c0010*c0111*alpha11*beta10*gamma1101 + a00*b01*c0010*alpha11*gamma1000*gamma1101 + $a 00^{*}$ c0010*c0111*alpha11*gamma1000*gamma1101 + a00*b01*c0010*alpha11*beta10*gamma1110 + a00*c0010*c0111*alpha11*beta10*gamma1110 + a00*b01*c0010*alpha11*gamma1000*gamma1110 + a00*c0010*c0111*alpha11*gamma1000*gamma1110))*F*S01*S10 +
((a01*b00*c0111*gamma1110 + a01*c0001*c0111*gamma1110 + a01*c0010*c0111*gamma1110)/(a00*b01*c0010*gamma1101 + a00*c0010*c0111*gamma1101 + $a 00^{*} \mathrm{~b} 01^{*} \mathrm{c} 0010^{*}$ gamma1110 + a00*c0010*c0111*gamma1110))*F*S01*S11

+ ((-a10*b00*c1011*alpha10*beta11*gamma1000-a10*c0001*c1011*alpha10*beta11*gamma1000 - a10*c0010*c1011*alpha10*beta11*gamma1000 a10*b00*c1011*alpha10*gamma1000*gamma1101 - a10*c0001*c1011*alpha10*gamma1000*gamma1101 - a10*c0010*c1011*alpha10*gamma1000*gamma1101 a10*b00*c1011*alpha10*gamma1000*gamma1110 - a10*c0001*c1011*alpha10*gamma1000*gamma1110 - a10*c0010*c1011*alpha10*gamma1000*gamma1110)/ (a00*b10* c0010*alpha11*beta10*gamma1101 + a00*c0010*c1011*alpha11*beta10*gamma1101 + a00*b10*c0010*alpha11*gamma1000*gamma1101 + a00*c0010*c1011*alpha11*gamma1000*gamma1101 + a00*b10*c0010*alpha11*beta10*gamma1110 + a00*c0010*c1011*alpha11*beta10*gamma1110 + $a 00^{*}$ b10*c0010*alpha11*gamma1000*gamma1110 + a00*c0010*c1011*alpha11*gamma1000*gamma1110))*F*S10^2
$+\left(\left(-a 10^{*} b 00^{*} c 1011^{*}\right.\right.$ gamma1101 - a10*c0001*c1011* gamma1101 - a10*c0010*c1011* gamma1101)/(a00*b10*c0010*gamma1101 + a00*c0010*c1011*gamma1101 + a00*b10*c0010*gamma1110 + a00*c0010*c1011*gamma1116))*F*S10*S11

Gröbner basis computation

(Model without simultaneous double phosphorylation.)

$\mathrm{F}^{*} \mathrm{S00}$ * $\mathrm{S} 11+$
((-a01*b00*c0111*alpha10*beta11*gamma1000 - a01*c0001*c0111*alpha10*beta11*gamma1000 - a01*c0010*c0111*alpha10*beta11*gamma1000 a01*b00*c0111*alpha10*gamma1000*gamma1101 - a01*c0001*c0111*alpha10*gamma1000*gamma1101 - a01*c0010*c0111*alpha10*gamma1000*gamma1101 a01*b00*c0111*alpha10*gamma1000*gamma1110-a01*c0001*c0111*alpha10*gamma1000*gamma1110 - a01*c0010*c0111*alpha10*gamma1000*gamma1110)/ (a00*b01*c0010*alpha11*beta10*gamma1101 + a00*c0010*c0111*alpha11*beta10*gamma1101 + a00*b01*c0010*alpha11*gamma1000*gamma1101 + a00* c0010*c0111*alpha11*gamma1000*gamma1101 + a00*b01*c0010*alpha11*beta10*gamma1110 + a00*c0010*c0111*alpha11*beta10*gamma1110 + a00*b01*c0010*alpha11*gamma1000*gamma1110 + a00*c0010*c0111*alpha11*gamma1000*gamma1110))*F*S01*S10 +
((a01*b00*c0111*gamma1110 + a01*c0001*c0111*gamma1110 + a01*c0010*c0111*gamma1110)/(a00*b01*c0010*gamma1101 + a00*c0010*c0111*gamma1101 + a00*b01*c0010*gamma1110 + a00*c0010*c0111*gamma1110))*F*S01*S11

+ ((-a10*b00*c1011*alpha10*beta11*gamma1000-a10*c0001*c1011*alpha10*beta11*gamma1000 - a10*c0010*c1011*alpha10*beta11*gamma1000 a10*b00*c1011*alpha10*gamma1000*gamma1101 - a10*c0001*c1011*alpha10*gamma1000*gamma1101 - a10*c0010*c1011*alpha10*gamma1000*gamma1101 a10*b00*c1011*alpha10*gamma1000*gamma1110 - a10*c0001*c1011*alpha10*gamma1000*gamma1110 - a10*c0010*c1011*alpha10*gamma1000*gamma1110)/ (a00*b10* c0010*alpha11*beta10*gamma1101 + a00*c0010*c1011*alpha11*beta10*gamma1101 + a00*b10*c0010*alpha11*gamma1000*gamma1101 + a00*c0010*c1011*alpha11*gamma1000*gamma1101 + a00*b10*c0010*alpha11*beta10*gamma1110 + a00*c0010*c1011*alpha11*beta10*gamma1110 + $a 00^{*}$ b10*c0010*alpha11*gamma1000*gamma1110 + a00*c0010* c1011*alpha11*gamma1000*gamma1110)) *F*S10^2
$+\left(\left(-a 0^{*} b 00^{*} c 1011^{*}\right.\right.$ gamma1101 - a10*c0001*c1011*gamma1101 -a10*c0010*c1011*gamma1101)/(a00*b10*c0010*gamma1101 + a00*c0010*c1011*gamma1101 + a00*b10*c0010*gamma1110 + a00*c0010*c1011*gamma1110))*F*S10*S11

$\mu_{1}\left[\mathrm{~S}_{00}\right]\left[\mathrm{S}_{11}\right]+\mu_{2}\left[\mathrm{~S}_{01}\right]\left[\mathrm{S}_{10}\right]+\mu_{3}\left[\mathrm{~S}_{01}\right]\left[\mathrm{S}_{11}\right]+\mu_{4}\left[\mathrm{~S}_{10}\right]^{2}+\mu_{5}\left[\mathrm{~S}_{10}\right]\left[\mathrm{S}_{11}\right]=0$

Gröbner basis computation

(Model without simultaneous double phosphorylation.)

F*S00*S11 +
((-a01*b00*c0111*alpha10*beta11*gamma1000 - a01*c0001*c0111*alpha10*beta11*gamma1000 - a01*c0010*c0111*alpha10*beta11*gamma1000 a01*b00*c0111*alpha10*gamma1000*gamma1101 - a01*c0001*c0111*alpha10*gamma1000*gamma1101 - a01*c0010*c0111*alpha10*gamma1000*gamma1101 $a 01 *$ b00*c0111*alpha10*gamma1000*gamma1110 - a01*c0001*c0111*alpha10*gamma1000*gamma1110-a01*c0010*c0111*alpha10*gamma1000*gamma1110)/ (a00*b01*c0010*alpha11*beta10*gamma1101 + a00*c0010*c0111*alpha11*beta10*gamma1101 + a00*b01*c0010*alpha11*gamma1000*gamma1101 + $a 00^{*} \mathrm{c} 0010^{*} \mathrm{c} 0111^{*}$ alpha11*gamma1000*gamma1101 + a00*b01*c0010*alpha11*beta10*gamma1110 + a00*c0010*c0111*alpha11*beta10*gamma1110 + a00*b01*c0010*alpha11*gamma1000*gamma1110 + a00*c0010*c0111*alpha11*gamma1000*gamma1110))*F*S01*S10 +
((a01*b00*c0111*gamma1110 + a01*c0001*c0111*gamma1110 + a01*c0010*c0111*gamma1110)/(a00*b01*c0010*gamma1101 + a00*c0010*c0111*gamma1101 + a00*b01*c0010*gamma1110 + a00*c0010*c0111*gamma1110))*F*S01*S11
$+\left(\left(-a 10^{*}\right.\right.$ b00*c1011*alpha10*beta11*gamma1000-a10*c0001*c1011*alpha10*beta11*gamma1000-a10*c0010*c1011*alpha10*beta11*gamma1000 a10*b00*c1011*alpha10*gamma1000*gamma1101 - a10*c0001*c1011*alpha10*gamma1000*gamma1101 - a10*c0010*c1011*alpha10*gamma1000*gamma1101 a10*b00*c1011*alpha10*gamma1000*gamma1110 - a10*c0001*c1011*alpha10*gamma1000*gamma1110 - a10*c0010*c1011*alpha10*gamma1000*gamma1110)/ (a00*b10* c0010*alpha11*beta10*gamma1101 + a00*c0010*c1011*alpha11*beta10*gamma1101 + a00*b10*c0010*alpha11*gamma1000*gamma1101 + a00*c0010*c1011*alpha11*gamma1000*gamma1101 + a00*b10*c0010*alpha11*beta10*gamma1110 + a00*c0010*c1011*alpha11*beta10*gamma1110 + a00*b10*c0010*alpha11*gamma1000*gamma1110 + a00*c0010*c1011*alpha11*gamma1000*gamma1110))*F*S10^2
$+\left(\left(-a 10^{*}\right.\right.$ b00*c 1011^{*} gamma1101 - a10*c0001*c1011* gamma1101 -a10*c0010*c1011*gamma1101)/(a00*b10*c0010*gamma1101 $+a 00^{*}$ c0010*c1011*gamma1101 + a00*b10*c0010*gamma1110 + a00*c0010*c1011*gamma1110))*F*S10*S11

$\mu_{1}\left[\mathrm{~S}_{00}\right]\left[\mathrm{S}_{11}\right]+\mu_{2}\left[\mathrm{~S}_{01}\right]\left[\mathrm{S}_{10}\right]+\mu_{3}\left[\mathrm{~S}_{01}\right]\left[\mathrm{S}_{11}\right]+\mu_{4}\left[\mathrm{~S}_{10}\right]^{2}+\mu_{5}\left[\mathrm{~S}_{10}\right]\left[\mathrm{S}_{11}\right]=0$

> Conclusion: If the model without simultaneous double phosphorylation is correct, then an equation on this form will hold for all steady states (independently of total concentrations).

Strategy for hypothesis testing

Strategy for hypothesis testing

- Hypothesis: The kinase can not phsophorylate at two sites simultaneously.

Strategy for hypothesis testing

- Hypothesis: The kinase can not phsophorylate at two sites simultaneously.
- Run experiments with different total concentrations, and measure concentrations at the steady states.

Strategy for hypothesis testing

- Hypothesis: The kinase can not phsophorylate at two sites simultaneously.
- Run experiments with different total concentrations, and measure concentrations at the steady states.
- Measure $\left[\mathrm{S}_{00}\right]$, $\left[\mathrm{S}_{01}\right],\left[\mathrm{S}_{10}\right]$ och $\left[\mathrm{S}_{11}\right]$ och compute the vector ($\left.\left[\mathrm{S}_{00}\right]\left[\mathrm{S}_{11}\right],\left[\mathrm{S}_{01}\right]\left[\mathrm{S}_{10}\right],\left[\mathrm{S}_{01}\right]\left[\mathrm{S}_{11}\right],\left[\mathrm{S}_{10}\right]^{2},\left[\mathrm{~S}_{10}\right]\left[\mathrm{S}_{11}\right]\right)$.

Strategy for hypothesis testing

- Hypothesis: The kinase can not phsophorylate at two sites simultaneously.
- Run experiments with different total concentrations, and measure concentrations at the steady states.
- Measure $\left[\mathrm{S}_{00}\right]$, $\left[\mathrm{S}_{01}\right]$], $\left[\mathrm{S}_{10}\right.$] och $\left[\mathrm{S}_{11}\right]$ och compute the vector ($\left.\left[\mathrm{S}_{00}\right]\left[\mathrm{S}_{11}\right],\left[\mathrm{S}_{01}\right]\left[\mathrm{S}_{10}\right],\left[\mathrm{S}_{01}\right]\left[\mathrm{S}_{11}\right],\left[\mathrm{S}_{10}\right]^{2},\left[\mathrm{~S}_{10}\right]\left[\mathrm{S}_{11}\right]\right)$.

Sample	$\left[\mathrm{S}_{00}\right]$	$\left[\mathrm{S}_{01}\right]$	$\left[\mathrm{S}_{10}\right]$	$\left[\mathrm{S}_{11}\right]$	$\left(\left[\mathrm{S}_{00}\right]\left[\mathrm{S}_{11}\right],\left[\mathrm{S}_{01}\right]\left[\mathrm{S}_{10}\right],\left[\mathrm{S}_{01}\right]\left[\mathrm{S}_{11}\right],\left[\mathrm{S}_{10}\right]^{2},\left[\mathrm{~S}_{10}\right]\left[\mathrm{S}_{11}\right]\right)$
$\# 1$	0.44	0.18	0.96	0.19	$(0.10,0.04,0.18,0.02,0.04,0.10)$
$\# 2$	0.74	0.58	0.43	0.10	$(0.05,0.04,0.25,0.03,0.01,0.02)$
$\# 3$	0.25	0.13	0.26	0.94	$(0.42,0.11,0.03,0.05,0.89,0.11)$
$\# 4$	0.20	0.43	0.17	0.11	$(0.31,0.06,0.07,0.13,0.01,0.05)$
$\# 5$	0.22	0.65	0.14	0.26	$(0.39,0.09,0.09,0.26,0.07,0.05)$
$\# 6$	0.31	0.66	0.76	0.32	$(0.39,0.12,0.50,0.26,0.10,0.30)$
$\# 7$	0.25	0.47	0.24	0.53	$(0.86,0.21,0.11,0.40,0.28,0.21)$
$\# 8$	0.17	0.72	0.51	0.01	$(0.29,0.05,0.37,0.21,0.00,0.15)$
$\# 9$	0.48	0.81	0.23	0.51	$(0.39,0.19,0.19,0.31,0.26,0.09)$

(Fictitious data for illustration purposes only.)

Strategy for hypothesis testing

- Hypothesis: The kinase can not phsophorylate at two sites simultaneously.
- Run experiments with different total concentrations, and measure concentrations at the steady states.
- Measure $\left[\mathrm{S}_{00}\right]$, $\left[\mathrm{S}_{01}\right],\left[\mathrm{S}_{10}\right]$ och $\left[\mathrm{S}_{11}\right]$ och compute the vector $\left(\left[\mathrm{S}_{00}\right]\left[\mathrm{S}_{11}\right],\left[\mathrm{S}_{01}\right]\left[\mathrm{S}_{10}\right],\left[\mathrm{S}_{01}\right]\left[\mathrm{S}_{11}\right],\left[\mathrm{S}_{10}\right]^{2},\left[\mathrm{~S}_{10}\right]\left[\mathrm{S}_{11}\right]\right)$.

Sample	$\left[\mathrm{S}_{00}\right]$	$\left[\mathrm{S}_{01}\right]$	$\left[\mathrm{S}_{10}\right]$	$\left[\mathrm{S}_{11}\right]$	$\left(\left[\mathrm{S}_{00}\right]\left[\mathrm{S}_{11}\right],\left[\mathrm{S}_{01}\right]\left[\mathrm{S}_{10}\right],\left[\mathrm{S}_{01}\right]\left[\mathrm{S}_{11}\right],\left[\mathrm{S}_{10}\right]^{2},\left[\mathrm{~S}_{10}\right]\left[\mathrm{S}_{11}\right]\right)$
$\# 1$	0.44	0.18	0.96	0.19	$(0.10,0.04,0.18,0.02,0.04,0.10)$
$\# 2$	0.74	0.58	0.43	0.10	$(0.05,0.04,0.25,0.03,0.01,0.02)$
$\# 3$	0.25	0.13	0.26	0.94	$(0.42,0.11,0.03,0.05,0.89,0.11)$
$\# 4$	0.20	0.43	0.17	0.11	$(0.31,0.06,0.07,0.13,0.01,0.05)$
$\# 5$	0.22	0.65	0.14	0.26	$(0.39,0.09,0.09,0.26,0.07,0.05)$
$\# 6$	0.31	0.66	0.76	0.32	$(0.39,0.12,0.50,0.26,0.10,0.30)$
$\# 7$	0.25	0.47	0.24	0.53	$(0.86,0.21,0.11,0.40,0.28,0.21)$
$\# 8$	0.17	0.72	0.51	0.01	$(0.29,0.05,0.37,0.21,0.00,0.15)$
$\# 9$	0.48	0.81	0.23	0.51	$(0.39,0.19,0.19,0.31,0.26,0.09)$

(Fictitious data for illustration purposes only.)

- Check: Do the vectors (approx.) satisfy an equation of the form $\mu_{1} y_{1}+\cdots+\mu_{5} y_{5}$, i.e. are they on a common hyperplane in \mathbb{R}^{5} ?

Strategy for hypothesis testing

- Hypothesis: The kinase can not phsophorylate at two sites simultaneously.
- Run experiments with different total concentrations, and measure concentrations at the steady states.
- Measure $\left[\mathrm{S}_{00}\right]$, $\left[\mathrm{S}_{01}\right],\left[\mathrm{S}_{10}\right]$ och $\left[\mathrm{S}_{11}\right]$ och compute the vector $\left(\left[\mathrm{S}_{00}\right]\left[\mathrm{S}_{11}\right],\left[\mathrm{S}_{01}\right]\left[\mathrm{S}_{10}\right],\left[\mathrm{S}_{01}\right]\left[\mathrm{S}_{11}\right],\left[\mathrm{S}_{10}\right]^{2},\left[\mathrm{~S}_{10}\right]\left[\mathrm{S}_{11}\right]\right)$.

Sample	$\left[\mathrm{S}_{00}\right]$	$\left[\mathrm{S}_{01}\right]$	$\left[\mathrm{S}_{10}\right]$	$\left[\mathrm{S}_{11}\right]$	$\left(\left[\mathrm{S}_{00}\right]\left[\mathrm{S}_{11}\right],\left[\mathrm{S}_{01}\right]\left[\mathrm{S}_{10}\right],\left[\mathrm{S}_{01}\right]\left[\mathrm{S}_{11}\right],\left[\mathrm{S}_{10}\right]^{2},\left[\mathrm{~S}_{10}\right]\left[\mathrm{S}_{11}\right]\right)$
$\# 1$	0.44	0.18	0.96	0.19	$(0.10,0.04,0.18,0.02,0.04,0.10)$
$\# 2$	0.74	0.58	0.43	0.10	$(0.05,0.04,0.25,0.03,0.01,0.02)$
$\# 3$	0.25	0.13	0.26	0.94	$(0.42,0.11,0.03,0.05,0.89,0.11)$
$\# 4$	0.20	0.43	0.17	0.11	$(0.31,0.06,0.07,0.13,0.01,0.05)$
$\# 5$	0.22	0.65	0.14	0.26	$(0.39,0.09,0.09,0.26,0.07,0.05)$
$\# 6$	0.31	0.66	0.76	0.32	$(0.39,0.12,0.50,0.26,0.10,0.30)$
$\# 7$	0.25	0.47	0.24	0.53	$(0.86,0.21,0.11,0.40,0.28,0.21)$
$\# 8$	0.17	0.72	0.51	0.01	$(0.29,0.05,0.37,0.21,0.00,0.15)$
$\# 9$	0.48	0.81	0.23	0.51	$(0.39,0.19,0.19,0.31,0.26,0.09)$

(Fictitious data for illustration purposes only.)

- Check: Do the vectors (approx.) satisfy an equation of the form $\mu_{1} y_{1}+\cdots+\mu_{5} y_{5}$, i.e. are they on a common hyperplane in \mathbb{R}^{5} ?
- No, $\sigma_{\min }=0.062 \gg 0$. Hence, the hypothesis is falsified!

Practical problems with Gröbner bases in CRNT

Practical problems with Gröbner bases in CRNT

- Don't take into account the fact that we're only interested in non-negative real solutions to the steady state equations.

Practical problems with Gröbner bases in CRNT

- Don't take into account the fact that we're only interested in non-negative real solutions to the steady state equations.
- Makes it harder to draw conclusions from the Gröbner basis (e.g. about the number of steady states).

Practical problems with Gröbner bases in CRNT

- Don't take into account the fact that we're only interested in non-negative real solutions to the steady state equations.
- Makes it harder to draw conclusions from the Gröbner basis (e.g. about the number of steady states).
- We miss out on equations that could have been used for model discrimination.

Practical problems with Gröbner bases in CRNT

- Don't take into account the fact that we're only interested in non-negative real solutions to the steady state equations.
- Makes it harder to draw conclusions from the Gröbner basis (e.g. about the number of steady states).
- We miss out on equations that could have been used for model discrimination.
- Gröbner bases for systems with many variables take a long time to compute.

Practical problems with Gröbner bases in CRNT

- Don't take into account the fact that we're only interested in non-negative real solutions to the steady state equations.
- Makes it harder to draw conclusions from the Gröbner basis (e.g. about the number of steady states).
- We miss out on equations that could have been used for model discrimination.
- Gröbner bases for systems with many variables take a long time to compute.
- The last few years, new methods for computing Gröbner bases for reaction networks have been proposed, that make use of intermediates to reduce the computation times:
A. Sadeghimanesh and E. Feliu, Gröbner Bases of Reaction Networks with Intermediate Species, Adv. Appl. Math. 107 (2019): 74-101.

Summary

$$
\begin{array}{ll}
X+Y \xrightarrow{1} X \stackrel{a}{\underset{1}{\rightleftharpoons}} 2 X & {[X]^{\prime}=a[X]-[X]^{2}-2[X][Y]} \\
X+Y \xrightarrow{2} Y \stackrel{b}{\stackrel{ }{\rightleftharpoons}} 2 & {[Y]^{\prime}=b[Y]-[Y]^{2}-[X][Y]}
\end{array}
$$

References

Reaction network theory:

- J. Gunawardena, Modeling of interaction networks in the cell: theory and mathematical methods, Comp. Biophys. 9 (2012).
- M. Feinberg, Foundations of Chemical Reaction Network Theory, Springer, 2019.
- D. Cox: The Classical Theory of Reaction Networks: https://youtu.be/Z1TwOeHNGgo.
- A. Dickenstein, Biochemical reaction networks: an invitation for algebraic geometers: http://mate.dm.uba.ar/~alidick/papers/MCA0215.pdf

Gröbner bases:

- D.A. Cox, J. Little, and D. O'Shea, Ideals, Varieties, and Algorithms, Undergraduate Texts in Mathematics, Springer, 2015.
- B. Sturmfels: Introduction to Gröbner Bases: https://youtu.be/TNO5WuxuNak.

Model discrimination:

- H.A. Harrington, K.L. Ho, T. Thorne, M.P.H. Stumpf, Parameter-free model discrimination, PNAS 109 (2012): 15746-15751.

Bonus: A classical theorem in reaction networks theory
The deficiency zero theorem (Horn, Jackson, Feinberg, 1970's)

Bonus: A classical theorem in reaction networks theory
The deficiency zero theorem (Horn, Jackson, Feinberg, 1970's)
Let \mathcal{N} be a reaction network with the following properties:

Bonus: A classical theorem in reaction networks theory

The deficiency zero theorem (Horn, Jackson, Feinberg, 1970's)
Let \mathcal{N} be a reaction network with the following properties:
1 The network is weakly reversible (for every reaction we can find a sequence of reactions from the products leading back to the reactants).

Bonus: A classical theorem in reaction networks theory

The deficiency zero theorem (Horn, Jackson, Feinberg, 1970's)
Let \mathcal{N} be a reaction network with the following properties:
1 The network is weakly reversible (for every reaction we can find a sequence of reactions from the products leading back to the reactants).

2 The so-called deficiency $\delta:=m-\ell-s$ equals zero.

Bonus: A classical theorem in reaction networks theory

The deficiency zero theorem (Horn, Jackson, Feinberg, 1970's)
Let \mathcal{N} be a reaction network with the following properties:
1 The network is weakly reversible (for every reaction we can find a sequence of reactions from the products leading back to the reactants).

2 The so-called deficiency $\delta:=m-\ell-s$ equals zero. Here, m denotes the number of complexes in the network,

Bonus: A classical theorem in reaction networks theory

The deficiency zero theorem (Horn, Jackson, Feinberg, 1970's)
Let \mathcal{N} be a reaction network with the following properties:
1 The network is weakly reversible (for every reaction we can find a sequence of reactions from the products leading back to the reactants).

2 The so-called deficiency $\delta:=m-\ell-s$ equals zero. Here, m denotes the number of complexes in the network, ℓ the number of connected components,

Bonus: A classical theorem in reaction networks theory

The deficiency zero theorem (Horn, Jackson, Feinberg, 1970's)
Let \mathcal{N} be a reaction network with the following properties:
1 The network is weakly reversible (for every reaction we can find a sequence of reactions from the products leading back to the reactants).

2 The so-called deficiency $\delta:=m-\ell-s$ equals zero. Here, m denotes the number of complexes in the network, ℓ the number of connected components, and s the number of "chemical degrees of freedom".

Bonus: A classical theorem in reaction networks theory

The deficiency zero theorem (Horn, Jackson, Feinberg, 1970's)
Let \mathcal{N} be a reaction network with the following properties:
1 The network is weakly reversible (for every reaction we can find a sequence of reactions from the products leading back to the reactants).

2 The so-called deficiency $\delta:=m-\ell-s$ equals zero. Here, m denotes the number of complexes in the network, ℓ the number of connected components, and s the number of "chemical degrees of freedom".

Then, for every choice of rate constants

Bonus: A classical theorem in reaction networks theory

The deficiency zero theorem (Horn, Jackson, Feinberg, 1970's)
Let \mathcal{N} be a reaction network with the following properties:
1 The network is weakly reversible (for every reaction we can find a sequence of reactions from the products leading back to the reactants).

2 The so-called deficiency $\delta:=m-\ell-s$ equals zero. Here, m denotes the number of complexes in the network, ℓ the number of connected components, and s the number of "chemical degrees of freedom".

Then, for every choice of rate constants and every choice of total concentrations,

Bonus: A classical theorem in reaction networks theory

The deficiency zero theorem (Horn, Jackson, Feinberg, 1970's)
Let \mathcal{N} be a reaction network with the following properties:
1 The network is weakly reversible (for every reaction we can find a sequence of reactions from the products leading back to the reactants).

2 The so-called deficiency $\delta:=m-\ell-s$ equals zero. Here, m denotes the number of complexes in the network, ℓ the number of connected components, and s the number of "chemical degrees of freedom".

Then, for every choice of rate constants and every choice of total concentrations, there will be a unique and locally (conjecturally: globally) attracting steady state.

Bonus: A classical theorem in reaction networks theory

The deficiency zero theorem (Horn, Jackson, Feinberg, 1970's)
Let \mathcal{N} be a reaction network with the following properties:
1 The network is weakly reversible (for every reaction we can find a sequence of reactions from the products leading back to the reactants).

2 The so-called deficiency $\delta:=m-\ell-s$ equals zero. Here, m denotes the number of complexes in the network, ℓ the number of connected components, and s the number of "chemical degrees of freedom".

Then, for every choice of rate constants and every choice of total concentrations, there will be a unique and locally (conjecturally: globally) attracting steady state.

Example: $\mathrm{T}+\mathrm{M} \underset{k_{3}}{\stackrel{k_{1}}{\rightleftharpoons}} \mathrm{C} \underset{k_{4}}{\stackrel{k_{2}}{\longrightarrow}} \mathrm{~A}$ (kinetic proofreading)

Bonus: A classical theorem in reaction networks theory

The deficiency zero theorem (Horn, Jackson, Feinberg, 1970's)
Let \mathcal{N} be a reaction network with the following properties:
1 The network is weakly reversible (for every reaction we can find a sequence of reactions from the products leading back to the reactants).

2 The so-called deficiency $\delta:=m-\ell-s$ equals zero. Here, m denotes the number of complexes in the network, ℓ the number of connected components, and s the number of "chemical degrees of freedom".

Then, for every choice of rate constants and every choice of total concentrations, there will be a unique and locally (conjecturally: globally) attracting steady state.

Recent paper about the interpretation of $\delta: \operatorname{arxiv}$. org/abs/2008.11468.

Bonus: A little bit of elimination theory

Bonus: A little bit of elimination theory

Consider a system of polynomial equations $\left\{\begin{array}{l}f_{1}(x, y, z, w)=0 \\ \vdots \\ f_{m}(x, y, z, w)=0 .\end{array}\right.$

Bonus: A little bit of elimination theory

Consider a system of polynomial equations $\left\{\begin{array}{l}f_{1}(x, y, z, w)=0 \\ \vdots \\ f_{m}(x, y, z, w)=0 .\end{array}\right.$
Problem: Find all polynomial relations that are satisfied by all positive solutions and that involves only some of the variables (say x and y).

Bonus: A little bit of elimination theory

Consider a system of polynomial equations $\left\{\begin{array}{l}f_{1}(x, y, z, w)=0 \\ \vdots \\ f_{m}(x, y, z, w)=0 .\end{array}\right.$
Problem: Find all polynomial relations that are satisfied by all positive solutions and that involves only some of the variables (say x and y).

This is a very hard problem!

Bonus: A little bit of elimination theory

Consider a system of polynomial equations $\left\{\begin{array}{l}f_{1}(x, y, z, w)=0 \\ \vdots \\ f_{m}(x, y, z, w)=0 .\end{array}\right.$
Problem: Find all polynomial relations that are satisfied by all positive solutions and that involves only some of the variables (say x and y).

This is a very hard problem! Gröbner bases give a partial solution.

Bonus: A little bit of elimination theory

Consider a system of polynomial equations $\left\{\begin{array}{l}f_{1}(x, y, z, w)=0 \\ \vdots \\ f_{m}(x, y, z, w)=0 .\end{array}\right.$
Problem: Find all polynomial relations that are satisfied by all positive solutions and that involves only some of the variables (say x and y).

This is a very hard problem! Gröbner bases give a partial solution.
The elimination theorem (see Chapter 3 in [CLO15])

Bonus: A little bit of elimination theory

Consider a system of polynomial equations $\left\{\begin{array}{l}f_{1}(x, y, z, w)=0 \\ \vdots \\ f_{m}(x, y, z, w)=0 .\end{array}\right.$
Problem: Find all polynomial relations that are satisfied by all positive solutions and that involves only some of the variables (say x and y).

This is a very hard problem! Gröbner bases give a partial solution.
The elimination theorem (see Chapter 3 in [CLO15])
Let \mathcal{G} be a Gröbner basis of $\left\langle f_{1}, \ldots, f_{m}\right\rangle$ with respect to the lexiographic ordering $z>w>x>y$.

Bonus: A little bit of elimination theory

Consider a system of polynomial equations $\left\{\begin{array}{l}f_{1}(x, y, z, w)=0 \\ \vdots \\ f_{m}(x, y, z, w)=0 .\end{array}\right.$
Problem: Find all polynomial relations that are satisfied by all positive solutions and that involves only some of the variables (say x and y).

This is a very hard problem! Gröbner bases give a partial solution.

The elimination theorem (see Chapter 3 in [CLO15])

Let \mathcal{G} be a Gröbner basis of $\left\langle f_{1}, \ldots, f_{m}\right\rangle$ with respect to the lexiographic ordering $z>w>x>y$. Then the set $\mathcal{G} \cap \mathbb{R}[x, y]$

Bonus: A little bit of elimination theory

Consider a system of polynomial equations $\left\{\begin{array}{l}f_{1}(x, y, z, w)=0 \\ \vdots \\ f_{m}(x, y, z, w)=0 .\end{array}\right.$
Problem: Find all polynomial relations that are satisfied by all positive solutions and that involves only some of the variables (say x and y).

This is a very hard problem! Gröbner bases give a partial solution.

The elimination theorem (see Chapter 3 in [CLO15])

Let \mathcal{G} be a Gröbner basis of $\left\langle f_{1}, \ldots, f_{m}\right\rangle$ with respect to the lexiographic ordering $z>w>x>y$. Then the set $\mathcal{G} \cap \mathbb{R}[x, y]$ contains the building blocks for all polynomial relations

Bonus: A little bit of elimination theory

Consider a system of polynomial equations $\left\{\begin{array}{l}f_{1}(x, y, z, w)=0 \\ \vdots \\ f_{m}(x, y, z, w)=0 .\end{array}\right.$
Problem: Find all polynomial relations that are satisfied by all positive solutions and that involves only some of the variables (say x and y).

This is a very hard problem! Gröbner bases give a partial solution.

The elimination theorem (see Chapter 3 in [CLO15])

Let \mathcal{G} be a Gröbner basis of $\left\langle f_{1}, \ldots, f_{m}\right\rangle$ with respect to the lexiographic ordering $z>w>x>y$. Then the set $\mathcal{G} \cap \mathbb{R}[x, y]$ contains the building blocks for all polynomial relations that involves only the variables x and y

Bonus: A little bit of elimination theory

Consider a system of polynomial equations

$$
\left\{\begin{array}{l}
f_{1}(x, y, z, w)=0 \\
\vdots \\
f_{m}(x, y, z, w)=0 .
\end{array}\right.
$$

Problem: Find all polynomial relations that are satisfied by all positive solutions and that involves only some of the variables (say x and y).

This is a very hard problem! Gröbner bases give a partial solution.

The elimination theorem (see Chapter 3 in [CLO15])

Let \mathcal{G} be a Gröbner basis of $\left\langle f_{1}, \ldots, f_{m}\right\rangle$ with respect to the lexiographic ordering $z>w>x>y$. Then the set $\mathcal{G} \cap \mathbb{R}[x, y]$ contains the building blocks for all polynomial relations that involves only the variables x and y that can be obtained as polynomial linear combinations of f_{1}, \ldots, f_{m}.

Bonus: A little bit of elimination theory

Consider a system of polynomial equations

$$
\left\{\begin{array}{l}
f_{1}(x, y, z, w)=0 \\
\vdots \\
f_{m}(x, y, z, w)=0 .
\end{array}\right.
$$

Problem: Find all polynomial relations that are satisfied by all positive solutions and that involves only some of the variables (say x and y).

This is a very hard problem! Gröbner bases give a partial solution.

The elimination theorem (see Chapter 3 in [CLO15])

Let \mathcal{G} be a Gröbner basis of $\left\langle f_{1}, \ldots, f_{m}\right\rangle$ with respect to the lexiographic ordering $z>w>x>y$. Then the set $\mathcal{G} \cap \mathbb{R}[x, y]$ contains the building blocks for all polynomial relations that involves only the variables x and y that can be obtained as polynomial linear combinations of f_{1}, \ldots, f_{m}.

Note: All such relations are satisfied by all positive solutions to the system!

Bonus: A little bit of elimination theory

Consider a system of polynomial equations

$$
\left\{\begin{array}{l}
f_{1}(x, y, z, w)=0 \\
\vdots \\
f_{m}(x, y, z, w)=0 .
\end{array}\right.
$$

Problem: Find all polynomial relations that are satisfied by all positive solutions and that involves only some of the variables (say x and y).

This is a very hard problem! Gröbner bases give a partial solution.

The elimination theorem (see Chapter 3 in [CLO15])

Let \mathcal{G} be a Gröbner basis of $\left\langle f_{1}, \ldots, f_{m}\right\rangle$ with respect to the lexiographic ordering $z>w>x>y$. Then the set $\mathcal{G} \cap \mathbb{R}[x, y]$ contains the building blocks for all polynomial relations that involves only the variables x and y that can be obtained as polynomial linear combinations of f_{1}, \ldots, f_{m}.

Note: All such relations are satisfied by all positive solutions to the system! But - there might be relations that can't be be obtained in this way!

Examples of what might go wrong

Examples of what might go wrong

$$
\left\{\begin{array}{l}
x^{2}-x+1-y^{2}=0 \\
y^{2}-x=0
\end{array}\right.
$$

Examples of what might go wrong

$$
\begin{gathered}
\left\{\begin{array}{l}
x^{2}-x+1-y^{2}=0 \\
y^{2}-x=0
\end{array}\right. \\
\left\{\begin{array}{l}
x^{2}-2 x+1=0 \\
y^{2}-x=0
\end{array}\right.
\end{gathered}
$$

Examples of what might go wrong

$$
\left\{\begin{array}{l}
x^{2}-x+1-y^{2}=0 \\
y^{2}-x=0
\end{array}\right.
$$

$$
\left\{\begin{array}{l}
x^{2}-2 x+1=0 \\
y^{2}-x=0
\end{array}\right.
$$

Examples of what might go wrong

$$
\left\{\begin{array}{l}
x^{2}-x+1-y^{2}=0 \\
y^{2}-x=0
\end{array}\right.
$$

$$
\left\{\begin{array}{l}
x^{2}-2 x+1=0 \\
y^{2}-x=0
\end{array}\right.
$$

The relation $x-1=0$ is not detected!

Examples of what might go wrong

$$
\left\{\begin{array} { l }
{ x ^ { 2 } - x + 1 - y ^ { 2 } = 0 } \\
{ y ^ { 2 } - x = 0 }
\end{array} \quad \left\{\begin{array}{l}
x^{2}-y^{2}=0 \\
x^{2}+y^{2}-1=0
\end{array}\right.\right.
$$

$$
\left\{\begin{array}{l}
x^{2}-2 x+1=0 \\
y^{2}-x=0
\end{array}\right.
$$

The relation $x-1=0$ is not detected!

Examples of what might go wrong

$$
\begin{array}{ll}
\left\{\begin{array}{l}
x^{2}-x+1-y^{2}=0 \\
y^{2}-x=0
\end{array}\right. & \left\{\begin{array}{l}
x^{2}-y^{2}=0 \\
x^{2}+y^{2}-1=0
\end{array}\right. \\
\left\{\begin{array}{l}
x^{2}-2 x+1=0 \\
y^{2}-x=0
\end{array}\right. & \left\{\begin{array}{l}
x^{2}-y^{2}=0 \\
2 x^{2}-1=0
\end{array}\right.
\end{array}
$$

The relation $x-1=0$ is not detected!

Examples of what might go wrong

$$
\begin{array}{ll}
\left\{\begin{array}{l}
x^{2}-x+1-y^{2}=0 \\
y^{2}-x=0
\end{array}\right. & \left\{\begin{array}{l}
x^{2}-y^{2}=0 \\
x^{2}+y^{2}-1=0
\end{array}\right. \\
\left\{\begin{array}{l}
x^{2}-2 x+1=0 \\
y^{2}-x=0
\end{array}\right. & \left\{\begin{array}{l}
x^{2}-y^{2}=0 \\
2 x^{2}-1=0
\end{array}\right.
\end{array}
$$

The relation $x-1=0$ is not detected!

Examples of what might go wrong

$$
\begin{gathered}
\left\{\begin{array}{l}
x^{2}-x+1-y^{2}=0 \\
y^{2}-x=0
\end{array}\right. \\
\left\{\begin{array}{l}
x^{2}-2 x+1=0 \\
y^{2}-x=0
\end{array}\right.
\end{gathered}
$$

The relation $x-1=0$ is not detected!

$$
\begin{gathered}
\left\{\begin{array}{l}
x^{2}-y^{2}=0 \\
x^{2}+y^{2}-1=0
\end{array}\right. \\
\left\{\begin{array}{l}
x^{2}-y^{2}=0 \\
2 x^{2}-1=0
\end{array}\right.
\end{gathered}
$$

The relation $x-\sqrt{2}=0$ is not detected!

