Gröbner bases in the study of chemical reaction networks

- What role can algebra play in the biochemistry of the future?

Gröbner bases in the study of chemical reaction networks — What role can algebra play in the biochemistry of the future?

Screenshot from http://biochemical-pathways.com

Agenda

1 Chemical reaction networks

T Chemical reaction networks

2 Gröbner bases

< A

- **1** Chemical reaction networks
- 2 Gröbner bases
- **3** A promising example

< A

- 1 Chemical reaction networks
- 2 Gröbner bases
- **3** A promising example
- 4 Practical problems

Oskar Henriksson

Gröbner bases and reaction networks

September 6, 2020

3 / 27

► A network of interconnected reactions:

< A

► A network of interconnected reactions:

$$O_3 \xleftarrow{k_1} O + O_2$$
$$O + O_3 \xrightarrow{k_3} 2O_2$$

< A

• A network of interconnected reactions:

$$0_3 \xleftarrow{k_1}{k_2} 0 + 0_2$$
$$0 + 0_3 \xrightarrow{k_3} 2 0_2$$

• A network of interconnected reactions:

$$0_3 \xleftarrow{k_1}{k_2} 0 + 0_2$$
$$0 + 0_3 \xrightarrow{k_3} 2 0_2$$

$$\frac{d}{dt}[O] = k_1[O_3] - k_2[O][O_2] - k_3[O][O_3]$$

$$\frac{d}{dt}[O_2] = k_1[O_3] - k_2[O][O_2] + 2k_3[O][O_3]$$

$$\frac{d}{dt}[O_3] = -k_1[O_3] + k_2[O][O_2] - k_3[O][O_3]$$

• A network of interconnected reactions:

$$0_3 \xleftarrow{k_1}{k_2} 0 + 0_2$$
$$0 + 0_3 \xrightarrow{k_3} 2 0_2$$

$$\frac{d}{dt}[O] = k_1[O_3] - k_2[O][O_2] - k_3[O][O_3]$$

$$\frac{d}{dt}[O_2] = k_1[O_3] - k_2[O][O_2] + 2k_3[O][O_3]$$

$$\frac{d}{dt}[O_3] = -k_1[O_3] + k_2[O][O_2] - k_3[O][O_3]$$

• A network of interconnected reactions:

$$0_3 \xleftarrow{k_1}{k_2} 0 + 0_2$$
$$0 + 0_3 \xrightarrow{k_3} 2 0_2$$

 ...that gives rise to a system of differential equations under *mass action kinetics*:

$$\frac{d}{dt}[O] = k_1[O_3] - k_2[O][O_2] - k_3[O][O_3]$$

$$\frac{d}{dt}[O_2] = k_1[O_3] - k_2[O][O_2] + 2k_3[O][O_3]$$

$$\frac{d}{dt}[O_3] = -k_1[O_3] + k_2[O][O_2] - k_3[O][O_3]$$

3 / 27

• A network of interconnected reactions:

$$0_3 \xleftarrow[k_1]{k_2} 0 + 0_2$$
$$0 + 0_3 \xrightarrow[k_3]{k_3} 2 0_2$$

$$\frac{d}{dt}[O] = k_1[O_3] - k_2[O][O_2] - k_3[O][O_3]$$

$$\frac{d}{dt}[O_2] = k_1[O_3] - k_2[O][O_2] + 2k_3[O][O_3]$$

$$\frac{d}{dt}[O_3] = -k_1[O_3] + k_2[O][O_2] - k_3[O][O_3]$$

Not just chemistry!

Oskar Henriksson

Gröbner bases and reaction networks

< □ ▶ < @ ▶ < E ▶ < E ▶ E = クへで s September 6, 2020 4 / 27

Not just chemistry!

Description	Reaction	Parameter value
Generation of new CD4+T cells	$\emptyset \xrightarrow{s_1} T$	10
Generation of new macrophages	$\emptyset \xrightarrow{s_2} M$	1.5×10^{-1}
Proliferation of T cells by presence of pathogen	$T + V \xrightarrow{k_1} (T + V) + T$	2×10^{-3}
Infection of T cells by HIV	$T + V \xrightarrow{k_2} T_i$	3×10^{-3}
Proliferation of M by presence of pathogen	$M + V \xrightarrow{k_3} (M + V) + M$	7.45×10^{-4}
Infection of M by HIV	$M + V \xrightarrow{k_4} M_i$	5.22×10^{-4}
Proliferation of HIV within CD4+T cell	$T_i \xrightarrow{k_5} V + T_i$	5.37×10^{-1}
Proliferation of HIV within macrophage	$M_i \xrightarrow{k_6} V + M_i$	2.85×10^{-1}
Natural death of CD4+T cells	$T \xrightarrow{\delta_1} \emptyset$	0.01
Natural death of infected T cells	$T_i \xrightarrow{\delta_2} \emptyset$	0.44
Natural death of macrophages	$M \xrightarrow{\delta_3} \emptyset$	6.6×10^{-3}
Natural death of infected macrophages	$M_i \xrightarrow{\delta_4} \emptyset$	6.6×10^{-3}
Natural death of HIV	$V \xrightarrow{\delta_5} \emptyset$	3

< A

315

Not just chemistry!

Description	Reaction	Parameter value	
Generation of new CD4+T cells	$\emptyset \xrightarrow{s_1} T$	10	
Generation of new macrophages	$\emptyset \xrightarrow{s_2} M$	1.5×10^{-1}	
Proliferation of T cells by presence of pathogen	$T + V \xrightarrow{k_1} (T + V) + T$	2×10^{-3}	
Infection of T cells by HIV	$T + V \xrightarrow{k_2} T_i$	3×10^{-3}	
Proliferation of M by presence of pathogen	$M + V \xrightarrow{k_3} (M + V) + M$	7.45×10^{-4}	016)
Infection of M by HIV	$M + V \xrightarrow{k_4} M_i$	5.22×10^{-4}	on (2(
Proliferation of HIV within CD4+T cell	$T_i \xrightarrow{k_5} V + T_i$	5.37×10^{-1}	ringto
Proliferation of HIV within macrophage	$M_i \xrightarrow{k_6} V + M_i$	2.85×10^{-1}	Har
Natural death of CD4+T cells	$T \xrightarrow{\delta_1} \emptyset$	0.01	tes 8
Natural death of infected T cells	$T_i \xrightarrow{\delta_2} \emptyset$	0.44	o, Ba
Natural death of macrophages	$M \xrightarrow{\delta_3} \emptyset$	6.6×10^{-3}	vis, H
Natural death of infected macrophages	$M_i \xrightarrow{\delta_4} \emptyset$	6.6×10^{-3}	s, Da
Natural death of HIV	$V \xrightarrow{\delta_5} \emptyset$	3	Gros

$$\begin{split} [T]' &= s_1 + k_1[T][V] - k_2[T][V] - \delta_1[T] \\ [T_i]' &= k_2[T][V] - \delta_2[T_i] \\ [M]' &= s_2 + k_3[M][V] - k_4[M][V] - \delta_3[M] \\ [M_i]' &= k_4[M][V] - \delta_4[M_i] \\ [V]' &= k_5[T_i] + k_6[M_i] - \delta_5[V] \end{split}$$

Oskar Henriksson

- ∢ ≣ →

A I >
A I >
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

三日 のへの

(ロ) (型) (E) (E) (E) (E) (O)

$$A + B \xrightarrow{\beta} 2 B$$
$$B \xrightarrow{\gamma} C$$

Oskar Henriksson

Gröbner bases and reaction networks

< □ ▶ < @ ▶ < E ▶ < E ▶ E = クへぐ <s September 6, 2020 5 / 27

$$A + B \xrightarrow{\beta} 2 B$$
$$B \xrightarrow{\gamma} C$$

$$\begin{split} & [\mathsf{A}]' = -\beta[\mathsf{A}][\mathsf{B}] \\ & [\mathsf{B}]' = \beta[\mathsf{A}][\mathsf{B}] - \gamma[\mathsf{B}] \\ & [\mathsf{C}]' = \gamma[\mathsf{B}] \end{split}$$

Oskar Henriksson

(ロ) (型) (E) (E) (E) (E) (O) September 6, 2020

5 / 27

$$S + I \xrightarrow{\beta} 2I$$
$$I \xrightarrow{\gamma} R$$

$$\begin{split} [\mathsf{S}]' &= -\beta[\mathsf{S}][\mathsf{I}] \\ [\mathsf{I}]' &= \beta[\mathsf{S}][\mathsf{I}] - \gamma[\mathsf{I}] \\ [\mathsf{R}]' &= \gamma[\mathsf{I}] \end{split}$$

Oskar Henriksson

< □ ▶ < @ ▶ < E ▶ < E ▶ E = クへぐ <s September 6, 2020 5 / 27

The dynamics of reaction networks

The dynamics of reaction networks What happens when $t \to \infty$?

리님

Oskar Henriksson

Gröbner bases and reaction networks

(ロ) (型) (E) (E) (E) (E) (O) September 6, 2020

7 / 27

$$\begin{array}{c} X \xrightarrow{1} \varnothing \\ 2X + Y \xrightarrow{1} 3X \\ \varnothing \xrightarrow{b} Y \xrightarrow{a} X \end{array}$$

Oskar Henriksson

September 6, 2020 7 / 27

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回日 うらう

Oskar Henriksson

Gröbner bases and reaction networks

September 6, 2020 8 / 27

Image: A matrix

E 990

$$X + Y \xrightarrow{1} X \xleftarrow{a} 2X$$
$$X + Y \xrightarrow{2} Y \xleftarrow{b} 2Y$$

September 6, 2020

Image: A matrix

E 990

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回日 うらう September 6, 2020

8 / 27

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回日 うらう September 6, 2020

Oskar Henriksson

The long-term goal

Oskar Henriksson

Gröbner bases and reaction networks

(ロ) (型) (E) (E) (E) (E) (O) September 6, 2020

9 / 27

The long-term goal

September 6, 2020

3 × 4 3 ×

< A
The long-term goal

Possible applications:

Planning in synthetic biology

The long-term goal

Possible applications:

- Planning in synthetic biology
- Hypothesis testing in systems biology

The problem?

Oskar Henriksson

Gröbner bases and reaction networks

September 6, 2020

< 1[™] >

●●● ■目 ▲目▼ ●●● 10 / 27

The problem? Unknown rate constants!

September 6, 2020

東下

The problem? Unknown rate constants!

Forces us to work algebraically och symbolically.

September 6, 2020

The problem?

Unknown rate constants!

Forces us to work algebraically och symbolically.

September 6, 2020

리님

Gröbner bases:

< 17 ►

Gröbner bases: A method for rewriting a system of *polynomial* equations in a smart way

ELE NOR

Gaussian elimination: A method for rewriting a system of *linear* equations in a smart way

ELE NOR

x > y

$$2x + 6y = -6$$
$$5x + 2y = 11$$

September 6, 2020

x > y

$$2x + 6y = -6$$
$$5x + 2y = 11$$

x > y

$$2x + 6y = -6$$
$$5x + 2y = 11$$

$$5 \cdot (2x + 6yy) = 5 \cdot (-6)$$
$$2 \cdot (5x + 2y) = 2 \cdot 11$$

Oskar Henriksson

Gröbner bases and reaction networks

September 6, 2020

x > y

$$2x + 6y = -6$$
$$5x + 2y = 11$$

$$10x + 30y = -30$$
$$10x + 4y = 22$$

Oskar Henriksson

Gröbner bases and reaction networks

September 6, 2020

x > y

$$2x + 6y = -6$$
$$5x + 2y = 11$$

$$10x + 30y = -30$$
$$-26y = 52$$

Oskar Henriksson

Gröbner bases and reaction networks

September 6, 2020

x > y

$$2x + 6y = -6$$
$$5x + 2y = 11$$

$$10x + 30y = -30$$
$$y = -2$$

Oskar Henriksson

Gröbner bases and reaction networks

September 6, 2020

x > y

$$2x + 6y = -6$$
$$5x + 2y = 11$$

$$10x - 60 = -30$$
$$y = -2$$

Oskar Henriksson

Gröbner bases and reaction networks

September 6, 2020

x > y

$$2x + 6y = -6$$
$$5x + 2y = 11$$

$$10x = 30$$
$$y = -2$$

Oskar Henriksson

Gröbner bases and reaction networks

September 6, 2020

x > y

$$2x + 6y = -6$$
$$5x + 2y = 11$$

$$x = 3$$
$$y = -2$$

Oskar Henriksson

Gröbner bases and reaction networks

September 6, 2020

020 13 / 27

x > y

$$2x + 6y = -6$$
$$5x + 2y = 11$$

x = 3y = -2

Put differently: We knocked out the rows against each other!

$$S = 5 \cdot (2x + 6y + 6) - 2 \cdot (5x + 2y - 11) = 26y + 52$$

E ► E E 990

$$x > y$$
 (lex)

$$x^2 + 2xy^2 = 0$$
$$xy + 2y^3 - 1 = 0$$

September 6, 2020

$$x > y$$
 (lex)

$$x^2 + 2xy^2 = 0$$
$$xy + 2y^3 - 1 = 0$$

$$x > y$$
 (lex)

$$x^2 + 2xy^2 = 0$$
$$xy + 2y^3 - 1 = 0$$

$$S(f_1, f_2) = y(x^2 + 2xy^2) - x(xy + 2y^3 - 1) = x$$

Oskar Henriksson

Gröbner bases and reaction networks

September 6, 2020

(ロ) (型) (E) (E) (E) (E) (O)

6, 2020 14 / 27

$$x > y$$
 (lex)

$$x^{2} + 2xy^{2} = 0$$
$$xy + 2y^{3} - 1 = 0$$
$$x = 0$$

$$S(f_1, f_2) = y(x^2 + 2xy^2) - x(xy + 2y^3 - 1) = x$$

Oskar Henriksson

Gröbner bases and reaction networks

September 6, 2020

(ロ) (型) (E) (E) (E) (E) (O)

$$x > y$$
 (lex)

$$x^{2} + 2xy^{2} = 0$$
$$xy + 2y^{3} - 1 = 0$$
$$x = 0$$

$$S(f_1, f_2) = y(x^2 + 2xy^2) - x(xy + 2y^3 - 1) = x$$

Oskar Henriksson

Gröbner bases and reaction networks

September 6, 2020

(ロ) (型) (E) (E) (E) (E) (O)

$$x > y$$
 (lex)

$$x^{2} + 2xy^{2} = 0$$
$$xy + 2y^{3} - 1 = 0$$
$$x = 0$$

$$S(f_1, f_2) = y(x^2 + 2xy^2) - x(xy + 2y^3 - 1) = x$$

$$S(f_2, f_3) = (xy + 2y^3 - 1) - yx = 2y^3 - 1$$

$$x > y$$
 (lex)

$$x^{2} + 2xy^{2} = 0$$
$$xy + 2y^{3} - 1 = 0$$
$$x = 0$$
$$2y^{3} - 1 = 0$$

$$S(f_1, f_2) = y(x^2 + 2xy^2) - x(xy + 2y^3 - 1) = x$$

$$S(f_2, f_3) = (xy + 2y^3 - 1) - yx = 2y^3 - 1$$

$$x > y$$
 (lex)

$$x^{2} + 2xy^{2} = 0$$
$$xy + 2y^{3} - 1 = 0$$
$$x = 0$$
$$2y^{3} - 1 = 0$$

$$S(f_1, f_2) = y(x^2 + 2xy^2) - x(xy + 2y^3 - 1) = x$$

$$S(f_2, f_3) = (xy + 2y^3 - 1) - yx = 2y^3 - 1$$

Oskar Henriksson Gröbner base

Gröbner bases and reaction networks

September 6, 2020

Input: $\mathcal{F} = \{f_1, \dots, f_m\}$ och an "order of prioritization" for the variables.

IN THE SOC

Input: $\mathcal{F} = \{f_1, \dots, f_m\}$ och an "order of prioritization" for the variables. Output: $\mathcal{G} = \{g_1, \dots, g_r\}.$

September 6, 2020

Input: $\mathcal{F} = \{f_1, \dots, f_m\}$ och an "order of prioritization" for the variables. Output: $\mathcal{G} = \{g_1, \dots, g_r\}$. **1** Let $\mathcal{G} := \mathcal{F}$.

September 6, 2020

5 × 3 5 × 5 15 900

Input: $\mathcal{F} = \{f_1, \dots, f_m\}$ och an "order of prioritization" for the variables. Output: $\mathcal{G} = \{g_1, \dots, g_r\}$. **1** Let $\mathcal{G} := \mathcal{F}$.

2 Pick a pair $p, q \in G$.

Input: $\mathcal{F} = \{f_1, \dots, f_m\}$ och an "order of prioritization" for the variables. Output: $\mathcal{G} = \{g_1, \dots, g_r\}.$

- **1** Let $\mathcal{G} := \mathcal{F}$.
- **2** Pick a pair $p, q \in G$.
- 3 Identify the leading terms and "knock them out" by setting $S = \sigma p + \tau q$ for appropriate polynomials σ and τ .

> < = > = = < < < <

Input: $\mathcal{F} = \{f_1, \dots, f_m\}$ och an "order of prioritization" for the variables. Output: $\mathcal{G} = \{g_1, \dots, g_r\}.$

- **1** Let $\mathcal{G} := \mathcal{F}$.
- **2** Pick a pair $p, q \in G$.
- 3 Identify the leading terms and "knock them out" by setting $S = \sigma p + \tau q$ for appropriate polynomials σ and τ .
- 4 Reduce S with respect to the other elements in G. If there is a remainder (i.e. S "contributes something new"), then add it to G.

∃ ► ▲ ∃ ► ∃ =

Input: $\mathcal{F} = \{f_1, \dots, f_m\}$ och an "order of prioritization" for the variables. Output: $\mathcal{G} = \{g_1, \dots, g_r\}.$

- **1** Let $\mathcal{G} := \mathcal{F}$.
- **2** Pick a pair $p, q \in G$.
- 3 Identify the leading terms and "knock them out" by setting $S = \sigma p + \tau q$ for appropriate polynomials σ and τ .
- 4 Reduce S with respect to the other elements in G. If there is a remainder (i.e. S "contributes something new"), then add it to G.
- 5 Go back to Step 2.

∃ ► ▲ ∃ ► ∃ =

Input: $\mathcal{F} = \{f_1, \dots, f_m\}$ och an "order of prioritization" for the variables. Output: $\mathcal{G} = \{g_1, \dots, g_r\}.$

- **1** Let $\mathcal{G} := \mathcal{F}$.
- **2** Pick a pair $p, q \in G$.
- 3 Identify the leading terms and "knock them out" by setting $S = \sigma p + \tau q$ for appropriate polynomials σ and τ .
- 4 Reduce S with respect to the other elements in G. If there is a remainder (i.e. S "contributes something new"), then add it to G.
- 5 Go back to Step 2.
- Keep going until all possible pairs of polynomials in G (including newcommers) have been investigated.
The Buchberger algorithm

Input: $\mathcal{F} = \{f_1, \dots, f_m\}$ och an "order of prioritization" for the variables. Output: $\mathcal{G} = \{g_1, \dots, g_r\}.$

- **1** Let $\mathcal{G} := \mathcal{F}$.
- **2** Pick a pair $p, q \in G$.
- 3 Identify the leading terms and "knock them out" by setting $S = \sigma p + \tau q$ for appropriate polynomials σ and τ .
- 4 Reduce S with respect to the other elements in G. If there is a remainder (i.e. S "contributes something new"), then add it to G.
- 5 Go back to Step 2.
- Keep going until all possible pairs of polynomials in G (including newcommers) have been investigated.
- **7** Clean up \mathcal{G} .

x > y > z (lex)

$$x^{2} + y^{2} + z^{2} - 4 = 0$$
$$x^{2} + 2y^{2} - 5 = 0$$
$$xz - 1 = 0$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ 三日日 のへで

Oskar Henriksson

$$x > y > z$$
 (lex)

$$x^{2} + y^{2} + z^{2} - 4 = 0$$
$$x^{2} + 2y^{2} - 5 = 0$$
$$xz - 1 = 0$$

$$x - 3z + 2z^3 = 0$$
$$y^2 - z^2 - 1 = 0$$
$$2z^4 - 3z^2 + 1 = 0$$

Oskar Henriksson

Gröbner bases and reaction networks

September 6, 2020

0 16 / 27

$$x > y > z$$
 (lex)

$$x^{2} + y^{2} + z^{2} - 4 = 0$$
$$x^{2} + 2y^{2} - 5 = 0$$
$$xz - 1 = 0$$

$$x - 3z + 2z^3 = 0$$
$$y^2 - z^2 - 1 = 0$$
$$2z^4 - 3z^2 + 1 = 0$$

In total: 8 solutions!

Oskar Henriksson

Gröbner bases and reaction networks

September 6, 2020

16 / 27

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

Oskar Henriksson

$$by - y^2 - xy = 0$$

Gröbner bases and reaction networks September 6, 2020 17 / 27

September 6, 2020

< A

< 行い

Solutions: (0, 0), (0, b), (a, 0), (-a + 2b, a - b).

A = A = A = A = A = A = A

A promising example from the literature:

ELE NOR

A promising example from the literature: Biochemical hypothesis testing

ELE NOR

< A

EN ELE NOG

ELE DOG

ELE DOG

September 6, 2020

September 6, 2020

$$\mathsf{K} + \mathsf{S}_0 \xleftarrow[b]{a}{\longrightarrow} \mathsf{K} \mathsf{S}_0 \xrightarrow[c]{c}{\longrightarrow} \mathsf{K} + \mathsf{S}_1$$

Oskar Henriksson

Gröbner bases and reaction networks

September 6 2

September 6, 2020 19 / 27

ELE DOG

$$\begin{array}{c} \mathsf{K} + \mathsf{S}_{0} \xleftarrow[b]{a}]{\overset{a}{\longleftarrow}} \mathsf{K} \mathsf{S}_{0} \xrightarrow[]{c} \mathsf{K} + \mathsf{S}_{1} \\ \\ \mathsf{F} + \mathsf{S}_{1} \xleftarrow[\beta]{a}]{\overset{\alpha}{\longleftarrow}} \mathsf{F} \mathsf{S}_{1} \xrightarrow[]{\gamma} \mathsf{F} + \mathsf{S}_{0} \end{array}$$

Oskar Henriksson

Gröbner bases and reaction networks

Samtamban 6

September 6, 2020 19 / 27

ELE DOG

Oskar Henriksson

Gröbner bases and reaction networks

September 6, 2020

A I >
 A I >
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

$$\mathsf{K} + \mathsf{S}_{00} \xrightarrow[b_{00}]{a_{00}} \mathsf{K} \mathsf{S}_{00} \begin{cases} \xrightarrow{c_{00,01}} & \mathsf{K} + \mathsf{S}_{01} \\ \xrightarrow{c_{00,10}} & \mathsf{K} + \mathsf{S}_{10} \end{cases}$$

September 6, 2020

< A

ミト 三国 のへの

$$\begin{split} \mathsf{K} + \mathsf{S}_{00} \xrightarrow[]{a_{00}}]{} \mathsf{K} \mathsf{S}_{00} \begin{cases} \xrightarrow[]{c_{00,01}}]{} \mathsf{K} + \mathsf{S}_{01} \\ \xrightarrow[]{c_{00,10}}]{} \mathsf{K} + \mathsf{S}_{10} \\ \hline \end{cases} \\ \mathsf{K} + \mathsf{S}_{01} \xrightarrow[]{a_{01}}]{} \mathsf{K} \mathsf{S}_{01} \xrightarrow[]{c_{01,11}}]{} \mathsf{K} + \mathsf{S}_{11} \end{split}$$

September 6, 2020

★ E ► ★ E ► E = 9 < 0<</p>

$$\begin{split} & \mathsf{K} + \mathsf{S}_{00} \xrightarrow[]{b_{00}} \mathsf{KS}_{00} \begin{cases} \frac{c_{00,01}}{c_{00,10}} & \mathsf{K} + \mathsf{S}_{01} \\ \frac{c_{00,10}}{c_{00,10}} & \mathsf{K} + \mathsf{S}_{10} \end{cases} \\ & \mathsf{K} + \mathsf{S}_{01} \xrightarrow[]{b_{01}} & \mathsf{KS}_{01} \xrightarrow[]{c_{01,11}} & \mathsf{K} + \mathsf{S}_{11} \\ & \mathsf{K} + \mathsf{S}_{10} \xrightarrow[]{b_{10}} & \mathsf{KS}_{10} \xrightarrow[]{c_{10,11}} & \mathsf{K} + \mathsf{S}_{11} \end{cases} \end{split}$$

September 6, 2020

20 / 27

ミト 三国 のへの

$$\begin{split} \mathsf{K} + \mathsf{S}_{00} & \overleftarrow{\overset{a_{00}}{\underbrace{b_{00}}}} \mathsf{K} \mathsf{S}_{00} \begin{cases} \frac{c_{00,01}}{c_{00,10}} \mathsf{K} + \mathsf{S}_{01} \\ \frac{c_{00,10}}{b_{00}} \mathsf{K} + \mathsf{S}_{10} \end{cases} \\ \\ \mathsf{K} + \mathsf{S}_{01} & \overleftarrow{\overset{a_{01}}{\underbrace{b_{01}}}} \mathsf{K} \mathsf{S}_{01} & \overleftarrow{\overset{c_{01,11}}{b_{01}}} \mathsf{K} + \mathsf{S}_{11} \\ \\ \mathsf{K} + \mathsf{S}_{10} & \overleftarrow{\overset{a_{10}}{b_{10}}} \mathsf{K} \mathsf{S}_{10} & \overleftarrow{\overset{c_{10,11}}{b_{10}}} \mathsf{K} + \mathsf{S}_{11} \end{cases} \end{split}$$

$$\begin{split} \mathsf{F} + \mathsf{S}_{01} & \xrightarrow{\alpha_{01}} \mathsf{FS}_{01} \xrightarrow{\gamma_{01,00}} \mathsf{F} + \mathsf{S}_{00} \\ \mathsf{F} + \mathsf{S}_{10} & \xrightarrow{\alpha_{10}} \mathsf{FS}_{10} \xrightarrow{\gamma_{10,00}} \mathsf{F} + \mathsf{S}_{00} \\ \mathsf{F} + \mathsf{S}_{11} & \xrightarrow{\alpha_{11}} \mathsf{FS}_{11} \begin{cases} \frac{\gamma_{11,01}}{\beta_{11}} & \mathsf{F} + \mathsf{S}_{01} \\ \frac{\gamma_{11,10}}{\beta_{11}} & \mathsf{F} + \mathsf{S}_{10} \end{cases} \end{split}$$

Oskar Henriksson

September 6, 2020

∃ ⊳

211 9QC

$$\begin{array}{c} \mathsf{K} + \mathsf{S}_{00} \xrightarrow[]{b_{00}} \mathsf{KS}_{00} \begin{cases} \frac{c_{00,01}}{c_{00,10}} \mathsf{K} + \mathsf{S}_{01} \\ \frac{c_{00,10}}{c_{00,11}} \mathsf{K} + \mathsf{S}_{10} \\ \frac{c_{00,11}}{b_{01}} \mathsf{K} + \mathsf{S}_{11} \end{cases} \\ \\ \mathsf{K} + \mathsf{S}_{01} \xrightarrow[]{b_{01}} \mathsf{KS}_{01} \xrightarrow[]{c_{01,11}} \mathsf{K} + \mathsf{S}_{11} \\ \\ \\ \mathsf{K} + \mathsf{S}_{10} \xrightarrow[]{b_{10}} \mathsf{KS}_{10} \xrightarrow[]{c_{10,11}} \mathsf{K} + \mathsf{S}_{11} \end{cases} \end{array}$$

$$\begin{split} \mathsf{F} + \mathsf{S}_{01} & \xrightarrow{\alpha_{01}} \mathsf{FS}_{01} \xrightarrow{\gamma_{01,00}} \mathsf{F} + \mathsf{S}_{00} \\ \mathsf{F} + \mathsf{S}_{10} & \xrightarrow{\alpha_{10}} \mathsf{FS}_{10} \xrightarrow{\gamma_{10,00}} \mathsf{F} + \mathsf{S}_{00} \\ \mathsf{F} + \mathsf{S}_{11} & \xrightarrow{\alpha_{11}} \mathsf{FS}_{11} \begin{cases} \frac{\gamma_{11,01}}{\beta_{11}} & \mathsf{F} + \mathsf{S}_{01} \\ \frac{\gamma_{11,10}}{\beta_{11}} & \mathsf{F} + \mathsf{S}_{10} \end{cases} \end{split}$$

Oskar Henriksson

∃ ⊳

211 9QC

Differential equations

```
dK/dt =
-a00*K*S00 + b00*KS00 + c0001*KS00 +
c0010*KS00 -a01*K*S01 + b01*KS01 + c0111*KS01
-a10*K*S10 + b10*KS10 + c1011*KS10
+ c0011*KS00
dF/dt =
-alpha01*F*S01 + beta01*FS01 + gamma0100*FS01
-alpha10*F*S10 + beta10*FS10 + gamma1000*FS10
-alpha11*F*S11 + beta11*FS11 + gamma1101*FS11
+ gamma1110*FS11
ds00/dt =
-a00*K*S00 + b00*KS00 + gamma0100*FS01 +
gamma1000*FS10
ds01/dt =
-a01*K*S01 + b01*KS01 - alpha01*F*S01 +
beta01*FS01 + c0001*KS00 + gamma1101*FS11
ds10/dt =
-a10*K*S10 + b10*KS10 - alpha10*F*S10 +
beta10*FS10 + c0010*KS00 + gamma1110*FS11
```

```
ds11/dt =
-alpha11*F*S11 + beta11*FS11 + c0111*KS01 +
c1011*KS10 + c0011*KS00
dKS00/dt =
a00*K*S00 - b00*KS00 - c0001*KS00 - c0010*KS00
- c0011*KS00
dKS01/dt =
a01*K*S01 - b01*KS01 - c0111*KS01
dKS10/dt =
a10*K*S10 - b10*KS10 - c1011*KS10
dFS01/dt =
alpha01*F*S01 - beta01*FS01 - gamma0100*FS01
dFs10/dt =
alpha10*F*S10 - beta10*FS10 - gamma1000*FS10
dFS11/dt =
alpha11*F*S11 - beta11*FS11 - gamma1101*FS11 -
gamma1110*FS11
```

Steady state equations

```
0 =
-a00*K*S00 + b00*KS00 + c0001*KS00 +
c0010*KS00 = a01*K*S01 + b01*KS01 + c0111*KS01
-a10*K*S10 + b10*KS10 + c1011*KS10
+ c0011*KS00
0 =
-alpha01*F*S01 + beta01*FS01 + gamma0100*FS01
-alpha10*F*S10 + beta10*FS10 + gamma1000*FS10
-alpha11*F*S11 + beta11*FS11 + gamma1101*FS11
+ gamma1110*FS11
0 =
-a00*K*S00 + b00*KS00 + gamma0100*FS01 +
gamma1000*FS10
0 =
-a01*K*S01 + b01*KS01 - alpha01*F*S01 +
beta01*FS01 + c0001*KS00 + gamma1101*FS11
0 =
-a10*K*S10 + b10*KS10 - alpha10*F*S10 +
beta10*FS10 + c0010*KS00 + gamma1110*FS11
```

```
0 =
-alpha11*F*S11 + beta11*FS11 + c0111*KS01 +
c1011*KS10 + c0011*KS00
0 =
a00*K*S00 - b00*KS00 - c0001*KS00 - c0010*KS00
- c0011*KS00
0 =
a01*K*S01 - b01*KS01 - c0111*KS01
0 =
a10*K*S10 - b10*KS10 - c1011*KS10
0 =
alpha01*F*S01 - beta01*FS01 - gamma0100*FS01
0 =
alpha10*F*S10 - beta10*FS10 - gamma1000*FS10
0 =
alpha11*F*S11 - beta11*FS11 - gamma1101*FS11 -
gamma1110*FS11
```

Steady state equations

```
0 =
                                                     0 =
-a00*K*S00 + b00*KS00 + c0001*KS00 +
                                                     -alpha11*F*S11 + beta11*FS11 + c0111*KS01 +
c0010*KS00 = a01*K*S01 + b01*KS01 + c0111*KS01
                                                     c1011*KS10 + c0011*KS00
-a10*K*S10 + b10*KS10 + c1011*KS10
+ c0011*KS00
                                                     0 =
                                                     a00*K*S00 - b00*KS00 - c0001*KS00 - c0010*KS00
0 =
                                                     - c0011*KS00
-alpha01*F*S01 + beta01*FS01 + gamma0100*FS01
-alpha10*F*S10 + beta10*FS10 + gamma1000*FS10
                                                     0 =
-alpha11*F*S11 + beta11*FS11 + gamma1101*FS11
                                                     a01*K*S01 - b01*KS01 - c0111*KS01
+ gamma1110*FS11
                                                     0 =
0 =
                                                     a10*K*S10 - b10*KS10 - c1011*KS10
-a00*K*S00 + b00*KS00 + gamma0100*FS01 +
gamma1000*FS10
                                                     0 =
                                                     alpha01*F*S01 - beta01*FS01 - gamma0100*FS01
0 =
-a01*K*S01 + b01*KS01 - alpha01*F*S01 +
beta01*FS01 + c0001*KS00 + gamma1101*FS11
                                                     0 =
                                                     alpha10*F*S10 - beta10*FS10 - gamma1000*FS10
0 =
-a10*K*S10 + b10*KS10 - alpha10*F*S10 +
                                                     0 =
beta10*FS10 + c0010*KS00 + gamma1110*FS11
                                                     alpha11*F*S11 - beta11*FS11 - gamma1101*FS11 -
                                                     gamma1110*FS11
```

Problem: We can only measure $[S_{00}]$, $[S_{01}]$, $[S_{10}]$ och $[S_{11}]$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回日 うらう

Steady state equations

```
0 =
                                                     0 =
-a00*K*S00 + b00*KS00 + c0001*KS00 +
                                                     -alpha11*F*S11 + beta11*FS11 + c0111*KS01 +
c0010*KS00 = a01*K*S01 + b01*KS01 + c0111*KS01
                                                     c1011*KS10 + c0011*KS00
-a10*K*S10 + b10*KS10 + c1011*KS10
+ c0011*KS00
                                                     0 =
                                                     a00*K*S00 - b00*KS00 - c0001*KS00 - c0010*KS00
0 =
                                                     - c0011*KS00
-alpha01*F*S01 + beta01*FS01 + gamma0100*FS01
-alpha10*F*S10 + beta10*FS10 + gamma1000*FS10
                                                     0 =
-alpha11*F*S11 + beta11*FS11 + gamma1101*FS11
                                                     a01*K*S01 - b01*KS01 - c0111*KS01
+ gamma1110*FS11
                                                     0 =
0 =
                                                     a10*K*S10 - b10*KS10 - c1011*KS10
-a00*K*S00 + b00*KS00 + gamma0100*FS01 +
gamma1000*FS10
                                                     0 =
                                                     alpha01*F*S01 - beta01*FS01 - gamma0100*FS01
0 =
-a01*K*S01 + b01*KS01 - alpha01*F*S01 +
beta01*FS01 + c0001*KS00 + gamma1101*FS11
                                                     0 =
                                                     alpha10*F*S10 - beta10*FS10 - gamma1000*FS10
0 =
-a10*K*S10 + b10*KS10 - alpha10*F*S10 +
                                                     0 =
beta10*FS10 + c0010*KS00 + gamma1110*FS11
                                                     alpha11*F*S11 - beta11*FS11 - gamma1101*FS11 -
                                                     gamma1110*FS11
```

Problem: We can only measure $[S_{00}]$, $[S_{01}]$, $[S_{10}]$ och $[S_{11}]$. Idea: Compute a Gröbner basis that eliminates variables!

September 6, 2020

イロッ 不通 アイビッ イビッ 正正 ろうろ

(Model without simultaneous double phosphorylation.)

EL SQA

(Model without simultaneous double phosphorylation.)

```
In [1]: A.<@0,a01,a10,b00,b01,b10,c001,c0010,c0011,c1011,c0011,a1pha10,a1pha10,a1pha10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta10,bta1
```

In [3]: G = I.groebner_basis()

27

(Model without simultaneous double phosphorylation.)

In [4]: G[-1]

Out[4]: F*S01^2 + ((a10*b01*c0010*c1011*alpha01*beta10*gamma0100 + a10*c0010*c0111*c1011*alpha01*beta10*gamma0100 + a10*b01*c1011*c0011 *alpha01*beta10*gamma0100 + a10*c011*c1011*c0011*alpha01*beta10*gamma0100 - a01*b10*c0001*c0111*alpha10*beta01*gamma1000 - a01 *c0001*c0111*c1011*alpha10*beta01*gamma1000 - a01*b10*c0111*c0011*alpha10*beta01*gamma1000 - a01*c0111*c1011*c0011*alpha10*beta 01*gamma1000 + a10*b01*c0010*c1011*alpha01*gamma0100*gamma1000 + a10*c0010*c0111*c1011*alpha01*gamma0100*gamma1000 + a10*b01*c1 011*c0011*alpha01*gamma0100*gamma1000 + a10*c0111*c1011*c0011*alpha01*gamma0100*gamma1000 - a01*b10*c0001*c0111*alpha10*gamma01 00*gamma1000 - a01*c0001*c0111*c1011*alpha10*gamma0100*gamma1000 - a01*b10*c0111*c0011*alpha10*gamma0100*gamma1000 - a01*c0111* c1011*c0011*alpha10*gamma0100*gamma1000)/(a01*b10*c0010*c0111*alpha01*beta10*gamma0100 + a01*c0010*c0111*c1011*alpha01*beta10*g amma0100 + a01*b10*c0010*c0111*alpha01*gamma0100*gamma1000 + a01*c0010*c0111*c1011*alpha01*gamma0100*gamma1000))*F*S01*S10 + ((c0001*alpha11*beta01*gamma1110 + c0010*alpha11*beta01*gamma1110 + c0011*alpha11*beta01*gamma1110 + c0001*alpha11*gamma0100*ga mma1110 + c0010*alpha11*gamma0100*gamma1110 + c0011*alpha11*gamma0100*gamma1110)/(c0010*alpha01*beta11*gamma0100 + c0010*alpha0 1*gamma0100*gamma1101 + c0010*alpha01*gamma0100*gamma1110))*F*S01*S11 + ((-a10*b01*c0001*c1011*alpha10*beta01*gamma1000 - a10*c 0001*c0111*c1011*alpha10*beta01*gamma1000 - a10*b01*c0001*c1011*alpha10*gamma0100*gamma1000 - a10*c0001*c0111*c1011*alpha10*gam ma0100*gamma1000)/(a01*b10*c0010*c0111*alpha01*beta10*gamma0100 + a01*c0010*c0111*c1011*alpha01*beta10*gamma0100 + a01*b10*c001 0*c0111*alpha01*gamma0100*gamma1000 + a01*c0010*c0111*c1011*alpha01*gamma0100*gamma1000))*F*S10^2 + ((-a10*b01*c0001*c1011*alph al1*beta01*gamma1101 - a10*b01*c0010*c1011*alpha11*beta01*gamma1101 - a10*c0001*c0111*c1011*alpha11*beta01*gamma1101 - a10*c001 0*c0111*c1011*alpha11*beta01*gamma1101 - a10*b01*c1011*c0011*alpha11*beta01*gamma1101 - a10*c0111*c1011*c0011*alpha11*beta01*ga mma1101 - a10*b01*c0001*c1011*alpha11*gamma0100*gamma1101 - a10*b01*c0010*c1011*alpha11*gamma0100*gamma1101 - a10*c0001*c0111*c 1011*alpha11*gamma0100*gamma1101 - a10*c0010*c0111*c1011*alpha11*gamma0100*gamma1101 - a10*b01*c1011*c0011*alpha11*gamma0100*ga mma1101 - a10*c0111*c1011*c0011*alpha11*gamma0100*gamma1101)/(a01*b10*c0010*c0111*alpha01*beta11*gamma0100 + a01*c0010*c0111*c1 011*alpha01*beta11*gamma0100 + a01*b10*c0010*c0111*alpha01*gamma0100*gamma1101 + a01*c0010*c0111*c1011*alpha01*gamma0100*gamma1 101 + a01*b10*c0010*c0111*alpha01*gamma0100*gamma1110 + a01*c0010*c0111*c1011*alpha01*gamma0100*gamma1110))*F*S10*S11

(Model without simultaneous double phosphorylation.)

In [5]: G[-2]

Out[5]: F's00*510 + ((-c001*alphali*betal0*gammal101 - c001*alphali*gammal000*gammal101 - c001*alphali*betal0*gammal101 - c001*alphali*gammal000*gammal101 - c001*alphali*betal0*gammal101 - c001*alphali*betal0*gammal101 - c001*alphali*gammal000*gammal101 - c001*alphali*betal0*gammal101 - c001*alphali*betal0*gammal101 - c001*alphali*gammal000*gammal101); F*500*511 + ((c001*b00*c011*alphal0*gammal00*gammal10 - a01*c000 10*c011*alphali*gammal00*gammal101 - c001*c001*c011*alphali*betal0*gammal10 - a01*c000*c011*alphali*betal0*gammal10 - a01*c000 0*c011*alphali*gammal00*gammal10 - a01*c000*c011*alphali*betal0*gammal10 - a01*c000*c011*alphali*betal0*gammal10 - a01*c000 0*c011*alphali*gammal000*gammal10 - a01*c000*c011*alphal0*betal1*gammal000 + a00*c011*c001*alphali*betal0*gammal10 - a01*c000 0*c011*alphali*gammal000*gammal10 - a01*c001*c011*alphal0*betal1*gammal000 + a00*c011*c001*alphali*betal0*gammal10 - a01*c011*alphali*gammal000*gammal10)/#0*01*c001*alphal0*betal1*gammal000 + a00*c011*alphali*betal0*gammal00* 0*c011*alphali*gammal00*gammal10)/#0*501*c011*alphal0*betal1*gammal00*gammal10 - a00*c001*alphali*betal0*gammal00 0* c001*alphali*gammal00*gammal10)/#0*501*c011*alphal0*betal1*gammal00*gammal10 - a00*c001*alphal1*betal0*alphali*betal0*gammal00 0*c001*alphali*gammal00*gammal10)/#501*c011*alphal0*betal1*gammal00*gammal10 - a00*c001*c001*alphal0*betal1*gammal00 gammal10 + a00*c011*alphal0*gammal00*gammal10)/#*501*c01 - (la10*b00*c1011 + a10*c000*c1011*alphal1*betal0*betal1*gammal00 *c101*alphal0*alphal0*gammal10)/#*501*c01 - alphal*betal0*alphali*betal0*alphal1*betal0*alphali*betal0*alphal0*betal0*alphal0*betal0*be

(Model without simultaneous double phosphorylation.)

F*S00*S11 +

((-a0'b00'c011'a]pho10'bcta11'gama1000 - a01'c0001'c011'a]pha10'bcta11'gama1000 - a01'c001'c011'a]pha10'bcta11'gama1000 a01'b00'c011'a]pha10'gama11000'gama1101 - a01'c0001'c011'a]pha10'gama11000'gama1101 - a01'c001'c011'a]pha10'gama1000'gama1110 a01'b00'c011'a]pha10'gama1000'gama1101 - a01'c0001'c011'a]pha10'gama1100'gama1101 - a01'c001'c011'a]pha10'bcta10'gama1000' (a00'b01'c0011'a]pha11'gama1000'gama1101 - a00'c000'c011'a]pha10'gama1100'gama1101 - a00'c001'c011'a]pha10'bcta10'gama1101 a00'b01'c0011'a]pha11'gama1000'gama1101 - a00'c001'c011'a]pha11'bcta10'gama1104 - a00'c001'c011'a]pha11'bcta10'gama1101 a00'b01'c001'c011'a]pha11'gama3000'gama1101 - a00'c001'c011'a]pha11'gama1000'gama1110 - a00'c001'c011'a]pha11'bcta10'gama3110 + a00'b01'c001'c011'a]pha11'gama000'gama1101 - a00'c001'c011'a]pha11'gama1000'gama1110 - a00'c001'c011'a]pha11'bcta10'gama3110 + a00'b01'c001'c011'a]pha11'gama3000'gama1101 - a00'c001'c011'a]pha11'gama1000'gama1101 - a00'c001'c011'a]pha11'bcta10'gama3110 + a00'b01'c001'c011'a]pha11'gama3000'gama3110 - a00'c001'c011'a]pha11'gama1000'gama3110 + a00'c001'c011'a]pha11'bcta10'gama3100 + a00'b01'c001'c011'a]pha11'gama300'gama300 + a00'c001'c001'a]pha11'bcta10'gama300 + a00'c001'c011'a]pha11'bcta10'gama300'gama300'gama3000'gama300'gama3000'gama3000'gama3000'gama300'ga

((a01*b00*c0111*gamma1110 + a01*c0001*c0111*gamma1110 + a01*c0010*c0111*gamma1110)/(a00*b01*c0010*gamma1101 + a00*c0010*c0111*gamma1101 + a00*c0010*c0111*gamma1101 + a00*c0010*c0111*gamma1101) + r*001*c011*gamma1100)/

+ ((.40⁺b0⁺c011⁺a]pha1⁰btr11⁺gamma1000 - a10⁺c0001⁺c101⁺a]pha10⁺btr11⁺gamma1000 - a10⁺c001⁺c101⁺a]pha10⁺btr11⁺gamma1000 - a10⁺c001⁺c101⁺a]pha10⁺btr11⁺gamma1000 - a10⁺c001⁺c101⁺a]pha10⁺bgamma110 - a10⁺c001⁺c101⁺a]pha10⁺bgamma110⁺ / al0⁺btr11⁺

+ ((-a10*b00*c1011*gamma1101 - a10*c0001*c1011*gamma1101 - a10*c0010*c1011*gamma1101)/(a00*b10*c0010*gamma1101 + a00*c0010*c1011*gamma1101 + a00*c0010*c1011*gamma1101)*F*S10*S11

(Model without simultaneous double phosphorylation.)

F*S00*S11 +

((-a0'b00'c011'a]pho10'bcta11'gama1000 - a01'c0001'c011'a]pha10'bcta11'gama1000 - a01'c001'c011'a]pha10'bcta11'gama1000 a01'b00'c011'a]pha10'gama11000'gama1101 - a01'c0001'c011'a]pha10'gama11000'gama1101 - a01'c001'c011'a]pha10'gama1000'gama1110 a01'b00'c011'a]pha10'gama1000'gama1101 - a01'c0001'c011'a]pha10'gama1100'gama1101 - a01'c001'c011'a]pha10'bcta10'gama1000' (a00'b01'c0011'a]pha11'gama1000'gama1101 - a00'c000'c011'a]pha10'gama1100'gama1101 - a00'c001'c011'a]pha10'bcta10'gama1101 a00'b01'c0011'a]pha11'gama1000'gama1101 - a00'c001'c011'a]pha11'bcta10'gama1104 - a00'c001'c011'a]pha11'bcta10'gama1101 a00'b01'c001'c011'a]pha11'gama3000'gama1101 - a00'c001'c011'a]pha11'gama1000'gama1110 - a00'c001'c011'a]pha11'bcta10'gama3110 + a00'b01'c001'c011'a]pha11'gama000'gama1101 - a00'c001'c011'a]pha11'gama1000'gama1110 - a00'c001'c011'a]pha11'bcta10'gama3110 + a00'b01'c001'c011'a]pha11'gama3000'gama1101 - a00'c001'c011'a]pha11'gama1000'gama1101 - a00'c001'c011'a]pha11'bcta10'gama3110 + a00'b01'c001'c011'a]pha11'gama3000'gama3110 - a00'c001'c011'a]pha11'gama1000'gama3110 + a00'c001'c011'a]pha11'bcta10'gama3100 + a00'b01'c001'c011'a]pha11'gama300'gama300 + a00'c001'c001'a]pha11'bcta10'gama300 + a00'c001'c011'a]pha11'bcta10'gama300'gama300'gama3000'gama300'gama3000'gama3000'gama3000'gama300'ga

((a01*b00*c0111*gamma1110 + a01*c0001*c0111*gamma1110 + a01*c0010*c0111*gamma1110)/(a00*b01*c0010*gamma1101 + a00*c0010*c0111*gamma1101 + a00*c0010*c0111*gamma1101 + a00*c0010*c0111*gamma1101) + r*001*c011*gamma1100)/

+ (('.a10'b00'c1011'alpha10'bctal1'gamma1000 - a10'c0001'c1011'alpha10'bctal1'gamma1000 - a10'c0001'c1011'alpha10'bctal1'gamma1000 a00'b00'c1011'alpha10'gamma1000'gamma110 - a10'c0001'c1011'alpha10'gamma1000'gamma110 - a10'c0001'c1011'alpha10'gamma1000'gamma110 a10'b00'c1011'alpha10'gamma100 - a10'c0001'c1011'alpha10'gamma1000'gamma110 - a10'c0001'c1011'alpha10'gamma1000 (a00'b10'c1001'alpha11'bcta10'gamma110 - a00'c0001'c1011'alpha11'bcta10'gamma100 + a00'b10'c0010'c1011'alpha1'gamma1000'gamma110 a00'c0010'c1011'alpha11'gamma1000'gamma110 + a00'c0001'c1011'alpha11'bcta10'gamma110 + a00'b10'c001'alpha11'bcta10'gamma110 + a00'b10'c0010'c1011'alpha11'gamma100'gamma110 + a00'c001'c1011'alpha11'bcta10'gamma110 + a00'b10'c001'alpha11'bcta10'gamma110 + a00'b10'c0010'c1011'alpha11'gamb00'gamma110 + a00'c001'c1011'alpha11'bcta10'gamma110 + a00'b10'c001'alpha11'bcta10'gamma110 + a00'b10'c0010'c1011'alpha11'gamb00'gamma110 + a00'c001'c1011'alpha11'bcta10'gamma100 + a00'b10'c001'alpha11'bcta10'gamma110 + a00'b10'c001'gamb00'gamb00'gamb00'gamb110 + a00'c001'alpha11'bcta10'gamma100 + a00'b10'c001'alpha11'gamb00'gamb00'gamb110 + a00'c001'alpha11'bcta10'gamma100 + a00'b10'c001'alpha11'gamb00'gamb0'gamb110 + a00'c001'alpha11'bcta10'gamb100'gamb10 + a00'b10'c001'alpha11'gamb00'gamb0'gamb110 + a00'c000'alpha11'bcta10'gamb10 + a00'b10'c001'alpha11'gamb00'gamb0'gamb10 + a00'c000'alpha11'bcta10'gamb10 + a00'b10'c001'alpha11'gamb0'gamb10 + a00'c000'alpha11'bcta10'gamb10 + a00'b10'c001'gamb10 + a00'c000'gamb10 + a00'c000'alpha11'bcta10'gamb10 + a00'b10'c001'gamb10 + a00'c000'gamb10 + a00'c000'alpha11'bcta10'gamb10 + a00'b10'c001'gamb10 + a00'c000'gamb10 + a00'b10'c001'gamb10 + a00'c000'gamb10 + a00'b10'c001'gamb10 + a00'c000'gamb10 + a00'b10'c001'gamb10 + a00'b10'c0

+ ((-a10*b00*c1011*gamma1101 - a10*c0001*c1011*gamma1101 - a10*c0010*c1011*gamma1101)/(a00*b10*c0010*gamma1101 + a00*c0010*c1011*gamma1101 + a00*c0010*c1011*gamma1101) *F*S10*S11

$\mu_{1}[S_{00}][S_{11}] + \mu_{2}[S_{01}][S_{10}] + \mu_{3}[S_{01}][S_{11}] + \mu_{4}[S_{10}]^{2} + \mu_{5}[S_{10}][S_{11}] = 0$

(Model without simultaneous double phosphorylation.)

F*S00*S11 +

((-a0'b00'c011'a]pho10'bcta11'gama1000 - a01'c0001'c011'a]pha10'bcta11'gama1000 - a01'c001'c011'a]pha10'bcta11'gama1000 a01'b00'c011'a]pha10'gama11000'gama1101 - a01'c0001'c011'a]pha10'gama11000'gama1101 - a01'c001'c011'a]pha10'gama1000'gama1110 a01'b00'c011'a]pha10'gama1000'gama1101 - a01'c0001'c011'a]pha10'gama1100'gama1101 - a01'c001'c011'a]pha10'bcta10'gama1000' (a00'b01'c0011'a]pha11'gama1000'gama1101 - a00'c000'c011'a]pha10'gama1100'gama1101 - a00'c001'c011'a]pha10'bcta10'gama1101 a00'b01'c0011'a]pha11'gama1000'gama1101 - a00'c001'c011'a]pha11'bcta10'gama1104 - a00'c001'c011'a]pha11'bcta10'gama1101 a00'b01'c001'c011'a]pha11'gama3000'gama1101 - a00'c001'c011'a]pha11'gama1000'gama1110 - a00'c001'c011'a]pha11'bcta10'gama3110 + a00'b01'c001'c011'a]pha11'gama000'gama1101 - a00'c001'c011'a]pha11'gama1000'gama1110 - a00'c001'c011'a]pha11'bcta10'gama3110 + a00'b01'c001'c011'a]pha11'gama3000'gama1101 - a00'c001'c011'a]pha11'gama1000'gama1101 - a00'c001'c011'a]pha11'bcta10'gama3110 + a00'b01'c001'c011'a]pha11'gama3000'gama3110 - a00'c001'c011'a]pha11'gama1000'gama3110 + a00'c001'c011'a]pha11'bcta10'gama3100 + a00'b01'c001'c011'a]pha11'gama300'gama300 + a00'c001'c001'a]pha11'bcta10'gama300 + a00'c001'c011'a]pha11'bcta10'gama300'gama300'gama3000'gama300'gama3000'gama3000'gama3000'gama300'ga

```
((a01*b00*c0111*gamma1110 + a01*c0001*c0111*gamma1110 + a01*c0010*c0111*gamma1110)/(a00*b01*c0010*gamma1101 + a00*c0010*c0111*gamma1101 + a00*c0010*c0111*gamma1101 + a00*c0010*c0111*gamma1101) + r*001*c011*gamma1100)/
```

+ (('a10'b00'c1011'alpha10'bctal1'gamma1000 - a10'c0001'c1011'alpha10'bctal1'gamma1000 - a10'c0001'c1011'alpha10'bctal1'gamma1000 a10'b00'c1011'alpha10'gamma1000'gamma110 - a10'c0001'c1011'alpha10'gamma1000'gamma100 - a10'c0001'c1011'alpha10'gamma1000'gamma110 a10'b00'c1011'alpha10'gamma100 - a10'c0001'c1011'alpha10'gamma1000'gamma100 - a00'c000'c1011'alpha10'gamma1000' (a00'b10'c001'alpha11'bcta10'gamma110 - a00'c0001'c1011'alpha10'bcta10'gamma100 - a00'b10'c0010'c1011'alpha10'gamma100 + a00'b10'c001'c1011'alpha11'gamma1000'gamma110 + a00'c000'c1011'alpha11'bcta10'gamma110 + a00'b10'c001'alpha11'bcta10'gamma110 + a00'b10'c001'c1011'alpha11'gamma1000'gamma110 + a00'c001'c1011'alpha11'bcta10'gamma110 + a00'b10'c001'alpha11'bcta10'gamma110 + a00'b10'c001'c1011'alpha11'gamb00'gamma110 + a00'c001'c1011'alpha11'bcta10'gamma110 + a00'b10'c001'alpha11'bcta10'gamma110 + a00'b10'c001'c1011'alpha11'gamb00'gamma110 + a00'c001'c1011'alpha11'bcta10'gamma100 + a00'b10'c001'alpha11'bcta10'gamma110 + a00'b10'c001'c1011'alpha11'gamb00'gamma110 + a00'c001'alpha11'bcta10'gamma100 + a00'b10'c001'alpha11'gamb00'gamb0'gamb110 + a00'c001'alpha11'bcta10'gamma100 + a00'b10'c001'alpha11'gamb00'gamb110 + a00'c001'alpha11'bcta10'gamma100 + a00'b10'c001'alpha11'gamb00'gamb110 + a00'c001'alpha11'bcta10'gamma100 + a00'b10'c001'alpha11'gamb00'gamb110 + a00'c000'alpha11'bcta10'gamb10 + a00'b10'c001'alpha11'gamb00'gamb110 + a00'c000'alpha11'bcta10'gamb100 + a00'b10'c001'alpha11'gamb00'gamb110 + a00'c000'alpha11'bcta10'gamb100 + a00'b10'c001'alpha11'gamb00'gamb10 + a00'c000'alpha11'bcta10'gamb10 + a00'b10'c001'alpha11'gamb00'gamb10 + a00'c000'alpha11'bcta10'gamb10 + a00'b10'c001'alpha11'gamb00'gamb10 + a00'c000'alpha11'bcta10'gamb100 + a00'b10'c001'alpha11'gamb00'gamb10 + a00'c000'alpha11'bcta10'gamb10 + a00'b10'c001'alpha11'gamb00'gamb10 + a00'c000'alpha11'bcta10'gamb10 + a00'b10'c001'alpha11'gamb00'gamb10 + a00'b10'c000'alpha11'bcta10'gamb10 + a00'b10'c001'alpha1'gamb00'gamb10 + a00'c000'alpha1'bcta10'gamb10 + a00'b10'c001'alpha1'gamb00

+ ((-a10*b00*c1011*gamma1101 - a10*c0001*c1011*gamma1101 - a10*c0010*c1011*gamma1101)/(a00*b10*c0010*gamma1101 + a00*c0010*c1011*gamma1101 + a00*c0010*c1011*gamma1101) *F*S10*S11

$$\mu_{1}[\mathsf{S}_{00}][\mathsf{S}_{11}] + \mu_{2}[\mathsf{S}_{01}][\mathsf{S}_{10}] + \mu_{3}[\mathsf{S}_{01}][\mathsf{S}_{11}] + \mu_{4}[\mathsf{S}_{10}]^{2} + \mu_{5}[\mathsf{S}_{10}][\mathsf{S}_{11}] = 0$$

Conclusion: If the model without simultaneous double phosphorylation is correct, then an equation on this form will hold for all steady states (independently of total concentrations).

・ロト ・帰 ト ・ヨト ・ヨト ・ヨヨ・ つんつ

Strategy for hypothesis testing

< A

E ► E = 990
▶ Hypothesis: The kinase can *not* phsophorylate at two sites simultaneously.

> = = ~ ~ ~

- ▶ Hypothesis: The kinase can *not* phsophorylate at two sites simultaneously.
- Run experiments with different total concentrations, and measure concentrations at the steady states.

ELE DOG

- Hypothesis: The kinase can not physophorylate at two sites simultaneously.
- Run experiments with different total concentrations, and measure concentrations at the steady states.
- ▶ Measure $[S_{00}]$, $[S_{01}]$, $[S_{10}]$ och $[S_{11}]$ och compute the vector $([S_{00}][S_{11}], [S_{01}][S_{10}], [S_{01}][S_{11}], [S_{10}]^2, [S_{10}][S_{11}])$.

3 N 2 1 2 N A A

- ▶ Hypothesis: The kinase can *not* phsophorylate at two sites simultaneously.
- Run experiments with different total concentrations, and measure concentrations at the steady states.
- ▶ Measure $[S_{00}]$, $[S_{01}]$, $[S_{10}]$ och $[S_{11}]$ och compute the vector $([S_{00}][S_{11}], [S_{01}][S_{10}], [S_{01}][S_{11}], [S_{10}]^2, [S_{10}][S_{11}])$.

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Sample	[S ₀₀]	[S ₀₁]	[S ₁₀]	$[S_{11}]$	$([S_{00}][S_{11}], [S_{01}][S_{10}], [S_{01}][S_{11}], [S_{10}]^2, [S_{10}][S_{11}])$
	#1 #2 #3 #4 #5 #6 #7 #8 #9	0.44 0.74 0.25 0.20 0.22 0.31 0.25 0.17 0.48	0.18 0.58 0.13 0.43 0.65 0.66 0.47 0.72 0.81	0.96 0.43 0.26 0.17 0.14 0.76 0.24 0.51 0.23	0.19 0.10 0.94 0.11 0.26 0.32 0.53 0.01 0.51	(0.10, 0.04, 0.18, 0.02, 0.04, 0.10) (0.05, 0.04, 0.25, 0.03, 0.01, 0.02) (0.42, 0.11, 0.03, 0.05, 0.89, 0.11) (0.31, 0.06, 0.07, 0.13, 0.01, 0.05) (0.39, 0.09, 0.09, 0.26, 0.07, 0.05) (0.39, 0.12, 0.50, 0.26, 0.10, 0.30) (0.86, 0.21, 0.11, 0.40, 0.28, 0.21) (0.29, 0.05, 0.37, 0.21, 0.00, 0.15) (0.39, 0.19, 0.19, 0.31, 0.26, 0.09)

(Fictitious data for illustration purposes only.)

⇒ ↓ ∃ ▶ ∃ | = ↓ < <</p>

- ▶ Hypothesis: The kinase can *not* phsophorylate at two sites simultaneously.
- Run experiments with different total concentrations, and measure concentrations at the steady states.
- ▶ Measure $[S_{00}]$, $[S_{01}]$, $[S_{10}]$ och $[S_{11}]$ och compute the vector $([S_{00}][S_{11}], [S_{01}][S_{10}], [S_{01}][S_{11}], [S_{10}]^2, [S_{10}][S_{11}])$.

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Sample	[S ₀₀]	[S ₀₁]	[S ₁₀]	$[S_{11}]$	$([S_{00}][S_{11}], [S_{01}][S_{10}], [S_{01}][S_{11}], [S_{10}]^2, [S_{10}][S_{11}])$
	#1 #2 #3 #4 #5 #6 #7 #8 #9	0.44 0.74 0.25 0.20 0.22 0.31 0.25 0.17 0.48	0.18 0.58 0.13 0.43 0.65 0.66 0.47 0.72 0.81	0.96 0.43 0.26 0.17 0.14 0.76 0.24 0.51 0.23	0.19 0.10 0.94 0.11 0.26 0.32 0.53 0.01 0.51	(0.10, 0.04, 0.18, 0.02, 0.04, 0.10) (0.05, 0.04, 0.25, 0.03, 0.01, 0.02) (0.42, 0.11, 0.03, 0.05, 0.89, 0.11) (0.31, 0.06, 0.07, 0.13, 0.01, 0.05) (0.39, 0.09, 0.09, 0.26, 0.07, 0.05) (0.39, 0.12, 0.50, 0.26, 0.10, 0.30) (0.86, 0.21, 0.11, 0.40, 0.28, 0.21) (0.29, 0.05, 0.37, 0.21, 0.00, 0.15) (0.39, 0.19, 0.19, 0.31, 0.26, 0.09)

(Fictitious data for illustration purposes only.)

• Check: Do the vectors (approx.) satisfy an equation of the form $\mu_1 y_1 + \cdots + \mu_5 y_5$, i.e. are they on a common hyperplane in \mathbb{R}^5 ?

▲ ■ ▶ ▲ ■ ▶ ■ ■ ■ ● ● ● ●

- ▶ Hypothesis: The kinase can *not* phsophorylate at two sites simultaneously.
- Run experiments with different total concentrations, and measure concentrations at the steady states.
- ▶ Measure $[S_{00}]$, $[S_{01}]$, $[S_{10}]$ och $[S_{11}]$ och compute the vector $([S_{00}][S_{11}], [S_{01}][S_{10}], [S_{01}][S_{11}], [S_{10}]^2, [S_{10}][S_{11}])$.

Sample	[S ₀₀]	[S ₀₁]	[S ₁₀]	$[S_{11}]$	$([S_{00}][S_{11}], [S_{01}][S_{10}], [S_{01}][S_{11}], [S_{10}]^2, [S_{10}][S_{11}])$
#1 #2 #3 #4 #5 #6 #7 #8 #9	0.44 0.74 0.25 0.20 0.22 0.31 0.25 0.17 0.48	0.18 0.58 0.13 0.43 0.65 0.66 0.47 0.72 0.81	0.96 0.43 0.26 0.17 0.14 0.76 0.24 0.51 0.23	0.19 0.10 0.94 0.11 0.26 0.32 0.53 0.01 0.51	(0.10, 0.04, 0.18, 0.02, 0.04, 0.10) (0.05, 0.04, 0.25, 0.03, 0.01, 0.02) (0.42, 0.11, 0.03, 0.05, 0.89, 0.11) (0.31, 0.06, 0.07, 0.13, 0.01, 0.05) (0.39, 0.09, 0.09, 0.26, 0.07, 0.05) (0.39, 0.12, 0.50, 0.26, 0.10, 0.30) (0.86, 0.21, 0.11, 0.40, 0.28, 0.21) (0.29, 0.05, 0.37, 0.21, 0.00, 0.15) (0.39, 0.19, 0.19, 0.31, 0.26, 0.09)

(Fictitious data for illustration purposes only.)

- Check: Do the vectors (approx.) satisfy an equation of the form $\mu_1 y_1 + \cdots + \mu_5 y_5$, i.e. are they on a common hyperplane in \mathbb{R}^5 ?
- ▶ No, $\sigma_{\min} = 0.062 \gg 0$. Hence, the hypothesis is falsified!

Oskar Henriksson

Gröbner bases and reaction networks

September 6, 2020

< A

IN IL NOR

Don't take into account the fact that we're only interested in non-negative real solutions to the steady state equations.

EL SQA

- Don't take into account the fact that we're only interested in non-negative real solutions to the steady state equations.
- Makes it harder to draw conclusions from the Gröbner basis (e.g. about the number of steady states).

25 / 27

- Don't take into account the fact that we're only interested in non-negative real solutions to the steady state equations.
- Makes it harder to draw conclusions from the Gröbner basis (e.g. about the number of steady states).
- We miss out on equations that could have been used for model discrimination.

- Don't take into account the fact that we're only interested in non-negative real solutions to the steady state equations.
- Makes it harder to draw conclusions from the Gröbner basis (e.g. about the number of steady states).
- We miss out on equations that could have been used for model discrimination.
- Gröbner bases for systems with many variables take a long time to compute.

25 / 27

- Don't take into account the fact that we're only interested in non-negative real solutions to the steady state equations.
- Makes it harder to draw conclusions from the Gröbner basis (e.g. about the number of steady states).
- We miss out on equations that could have been used for model discrimination.
- Gröbner bases for systems with many variables take a long time to compute.
- ► The last few years, new methods for computing Gröbner bases for reaction networks have been proposed, that make use of *intermediates* to reduce the computation times:

A. Sadeghimanesh and E. Feliu, *Gröbner Bases of Reaction Networks with Intermediate Species*, Adv. Appl. Math. **107** (2019): 74–101.

B A B A B B B A A A

Summary

September 6, 2020

< AP

▲ Ξ ► ▲ Ξ ► Ξ Ξ Ξ • ○ Q ○

References

Reaction network theory:

- J. Gunawardena, Modeling of interaction networks in the cell: theory and mathematical methods, Comp. Biophys. 9 (2012).
- M. Feinberg, Foundations of Chemical Reaction Network Theory, Springer, 2019.
- D. Cox: The Classical Theory of Reaction Networks: https://youtu.be/Z1TwOeHNGgo.
- A. Dickenstein, Biochemical reaction networks: an invitation for algebraic geometers: http://mate.dm.uba.ar/~alidick/papers/MCA0215.pdf

Gröbner bases:

- D.A. Cox, J. Little, and D. O'Shea, *Ideals, Varieties, and Algorithms*, Undergraduate Texts in Mathematics, Springer, 2015.
- ▶ B. Sturmfels: Introduction to Gröbner Bases: https://youtu.be/TNO5WuxuNak.

Model discrimination:

H.A. Harrington, K.L. Ho, T. Thorne, M.P.H. Stumpf, Parameter-free model discrimination, PNAS 109 (2012): 15746–15751.

Oskar Henriksson

The deficiency zero theorem (Horn, Jackson, Feinberg, 1970's)

EL SQA

The deficiency zero theorem (Horn, Jackson, Feinberg, 1970's) Let N be a reaction network with the following properties:

ELE NOR

The deficiency zero theorem (Horn, Jackson, Feinberg, 1970's)

Let $\ensuremath{\mathcal{N}}$ be a reaction network with the following properties:

1 The network is *weakly reversible* (for every reaction we can find a sequence of reactions from the products leading back to the reactants).

The deficiency zero theorem (Horn, Jackson, Feinberg, 1970's)

Let $\ensuremath{\mathcal{N}}$ be a reaction network with the following properties:

- **1** The network is *weakly reversible* (for every reaction we can find a sequence of reactions from the products leading back to the reactants).
- **2** The so-called *deficiency* $\delta := m \ell s$ equals zero.

28 / 27

The deficiency zero theorem (Horn, Jackson, Feinberg, 1970's)

Let $\ensuremath{\mathcal{N}}$ be a reaction network with the following properties:

- **1** The network is *weakly reversible* (for every reaction we can find a sequence of reactions from the products leading back to the reactants).
- 2 The so-called *deficiency* $\delta := m \ell s$ equals zero. Here, *m* denotes the number of complexes in the network,

The deficiency zero theorem (Horn, Jackson, Feinberg, 1970's)

Let $\ensuremath{\mathcal{N}}$ be a reaction network with the following properties:

- **1** The network is *weakly reversible* (for every reaction we can find a sequence of reactions from the products leading back to the reactants).
- 2 The so-called *deficiency* $\delta := m \ell s$ equals zero. Here, *m* denotes the number of complexes in the network, ℓ the number of connected components,

28 / 27

The deficiency zero theorem (Horn, Jackson, Feinberg, 1970's)

Let $\ensuremath{\mathcal{N}}$ be a reaction network with the following properties:

- **1** The network is *weakly reversible* (for every reaction we can find a sequence of reactions from the products leading back to the reactants).
- **2** The so-called *deficiency* $\delta := m \ell s$ equals zero. Here, *m* denotes the number of complexes in the network, ℓ the number of connected components, and *s* the number of "chemical degrees of freedom".

A ≡ ↓ ≡ | = √Q ∩

The deficiency zero theorem (Horn, Jackson, Feinberg, 1970's)

Let $\ensuremath{\mathcal{N}}$ be a reaction network with the following properties:

- **1** The network is *weakly reversible* (for every reaction we can find a sequence of reactions from the products leading back to the reactants).
- **2** The so-called *deficiency* $\delta := m \ell s$ equals zero. Here, *m* denotes the number of complexes in the network, ℓ the number of connected components, and *s* the number of "chemical degrees of freedom".

Then, for every choice of rate constants

> < = > = = < < < <

The deficiency zero theorem (Horn, Jackson, Feinberg, 1970's)

Let $\ensuremath{\mathcal{N}}$ be a reaction network with the following properties:

- **1** The network is *weakly reversible* (for every reaction we can find a sequence of reactions from the products leading back to the reactants).
- **2** The so-called *deficiency* $\delta := m \ell s$ equals zero. Here, *m* denotes the number of complexes in the network, ℓ the number of connected components, and *s* the number of "chemical degrees of freedom".

Then, for every choice of rate constants and every choice of total concentrations,

A ≡ ↓ ≡ | = √Q ∩

28 / 27

The deficiency zero theorem (Horn, Jackson, Feinberg, 1970's)

Let $\ensuremath{\mathcal{N}}$ be a reaction network with the following properties:

- **1** The network is *weakly reversible* (for every reaction we can find a sequence of reactions from the products leading back to the reactants).
- **2** The so-called *deficiency* $\delta := m \ell s$ equals zero. Here, *m* denotes the number of complexes in the network, ℓ the number of connected components, and *s* the number of "chemical degrees of freedom".

Then, for every choice of rate constants and every choice of total concentrations, there will be a *unique* and locally (conjecturally: globally) attracting steady state.

> < = > = = < < < <

The deficiency zero theorem (Horn, Jackson, Feinberg, 1970's)

Let $\ensuremath{\mathcal{N}}$ be a reaction network with the following properties:

- 1 The network is *weakly reversible* (for every reaction we can find a sequence of reactions from the products leading back to the reactants).
- **2** The so-called *deficiency* $\delta := m \ell s$ equals zero. Here, *m* denotes the number of complexes in the network, ℓ the number of connected components, and *s* the number of "chemical degrees of freedom".

Then, for every choice of rate constants and every choice of total concentrations, there will be a *unique* and locally (conjecturally: globally) attracting steady state.

Example:
$$T + M \xrightarrow[k_4]{k_4} C \xrightarrow[k_3]{k_2} A$$
 (kinetic proofreading)

> < = > = = < < < <

The deficiency zero theorem (Horn, Jackson, Feinberg, 1970's)

Let \mathcal{N} be a reaction network with the following properties:

- 1 The network is *weakly reversible* (for every reaction we can find a sequence of reactions from the products leading back to the reactants).
- **2** The so-called *deficiency* $\delta := m \ell s$ equals zero. Here, *m* denotes the number of complexes in the network, ℓ the number of connected components, and s the number of "chemical degrees of freedom".

Then, for every choice of rate constants and every choice of total concentrations, there will be a *unique* and locally (conjecturally: globally) attracting steady state.

Example:
$$T + M \xrightarrow{k_1} C \xrightarrow{k_2} A$$
 (kinetic proofreading)

Recent paper about the interpretation of δ : arxiv.org/abs/2008.11468.

28 / 27

- A 🖓

5 N 2 1 2 N 0 0 0

Consider a system of polynomial equations

$$\begin{cases} f_1(x, y, z, w) = 0\\ \vdots\\ f_m(x, y, z, w) = 0. \end{cases}$$

Oskar Henriksson

Gröbner bases and reaction networks

September 6, 2020

Consider a system of polynomial equations

$$\begin{cases} f_1(x, y, z, w) = 0 \\ \vdots \\ f_m(x, y, z, w) = 0 . \end{cases}$$

Problem: Find all *polynomial relations* that are **satisfied by all positive solutions** and that involves *only some of the variables* (say x and y).

Consider a system of polynomial equations

$$\begin{cases} f_1(x, y, z, w) = 0 \\ \vdots \\ f_m(x, y, z, w) = 0 . \end{cases}$$

Problem: Find all *polynomial relations* that are **satisfied by all positive solutions** and that involves *only some of the variables* (say x and y).

This is a very hard problem!

Consider a system of polynomial equations

$$\begin{cases} f_1(x, y, z, w) = 0 \\ \vdots \\ f_m(x, y, z, w) = 0 . \end{cases}$$

Problem: Find all *polynomial relations* that are **satisfied by all positive solutions** and that involves *only some of the variables* (say x and y).

This is a very hard problem! Gröbner bases give a partial solution.

Consider a system of polynomial equations

$$\begin{cases} f_1(x, y, z, w) = 0 \\ \vdots \\ f_m(x, y, z, w) = 0 . \end{cases}$$

Problem: Find all *polynomial relations* that are **satisfied by all positive solutions** and that involves *only some of the variables* (say x and y).

This is a very hard problem! Gröbner bases give a partial solution.

The elimination theorem (see Chapter 3 in [CLO15])

Consider a system of polynomial equations

$$\begin{cases} f_1(x, y, z, w) = 0 \\ \vdots \\ f_m(x, y, z, w) = 0 . \end{cases}$$

Problem: Find all *polynomial relations* that are **satisfied by all positive solutions** and that involves *only some of the variables* (say x and y).

This is a very hard problem! Gröbner bases give a partial solution.

The elimination theorem (see Chapter 3 in [CLO15])

Let \mathcal{G} be a Gröbner basis of $\langle f_1, \ldots, f_m \rangle$ with respect to the lexiographic ordering z > w > x > y.

Consider a system of polynomial equations

$$\begin{cases} f_1(x, y, z, w) = 0 \\ \vdots \\ f_m(x, y, z, w) = 0 . \end{cases}$$

Problem: Find all *polynomial relations* that are **satisfied by all positive solutions** and that involves *only some of the variables* (say x and y).

This is a very hard problem! Gröbner bases give a partial solution.

The elimination theorem (see Chapter 3 in [CLO15])

Let \mathcal{G} be a Gröbner basis of $\langle f_1, \ldots, f_m \rangle$ with respect to the lexiographic ordering z > w > x > y. Then the set $\mathcal{G} \cap \mathbb{R}[x, y]$

Consider a system of polynomial equations

$$\begin{cases} f_1(x, y, z, w) = 0 \\ \vdots \\ f_m(x, y, z, w) = 0 . \end{cases}$$

Problem: Find all *polynomial relations* that are **satisfied by all positive solutions** and that involves *only some of the variables* (say x and y).

This is a very hard problem! Gröbner bases give a partial solution.

The elimination theorem (see Chapter 3 in [CLO15])

Let \mathcal{G} be a Gröbner basis of $\langle f_1, \ldots, f_m \rangle$ with respect to the lexiographic ordering z > w > x > y. Then the set $\mathcal{G} \cap \mathbb{R}[x, y]$ contains the building blocks for all polynomial relations

Consider a system of polynomial equations

$$\begin{cases} f_1(x, y, z, w) = 0 \\ \vdots \\ f_m(x, y, z, w) = 0 . \end{cases}$$

Problem: Find all *polynomial relations* that are **satisfied by all positive solutions** and that involves *only some of the variables* (say x and y).

This is a very hard problem! Gröbner bases give a partial solution.

The elimination theorem (see Chapter 3 in [CLO15])

Let \mathcal{G} be a Gröbner basis of $\langle f_1, \ldots, f_m \rangle$ with respect to the lexiographic ordering z > w > x > y. Then the set $\mathcal{G} \cap \mathbb{R}[x, y]$ contains the building blocks for all polynomial relations that involves only the variables x and y
Bonus: A little bit of elimination theory

Consider a system of polynomial equations

$$\begin{cases} f_1(x, y, z, w) = 0 \\ \vdots \\ f_m(x, y, z, w) = 0 . \end{cases}$$

Problem: Find all *polynomial relations* that are **satisfied by all positive solutions** and that involves *only some of the variables* (say x and y).

This is a very hard problem! Gröbner bases give a partial solution.

The elimination theorem (see Chapter 3 in [CLO15])

Let \mathcal{G} be a Gröbner basis of $\langle f_1, \ldots, f_m \rangle$ with respect to the lexiographic ordering z > w > x > y. Then the set $\mathcal{G} \cap \mathbb{R}[x, y]$ contains the building blocks for all polynomial relations that involves only the variables x and ythat can be obtained as polynomial linear combinations of f_1, \ldots, f_m .

Bonus: A little bit of elimination theory

Consider a system of polynomial equations

$$\begin{cases} f_1(x, y, z, w) = 0 \\ \vdots \\ f_m(x, y, z, w) = 0 . \end{cases}$$

Problem: Find all *polynomial relations* that are **satisfied by all positive solutions** and that involves *only some of the variables* (say x and y).

This is a very hard problem! Gröbner bases give a partial solution.

The elimination theorem (see Chapter 3 in [CLO15])

Let \mathcal{G} be a Gröbner basis of $\langle f_1, \ldots, f_m \rangle$ with respect to the lexiographic ordering z > w > x > y. Then the set $\mathcal{G} \cap \mathbb{R}[x, y]$ contains the building blocks for all polynomial relations that involves only the variables x and y that can be obtained as polynomial linear combinations of f_1, \ldots, f_m .

Note: All such relations are satisfied by all positive solutions to the system!

▲■▶ ★ ■▶ ★ ■▶ ■目 のQ@

Bonus: A little bit of elimination theory

Consider a system of polynomial equations

$$\begin{cases} f_1(x, y, z, w) = 0 \\ \vdots \\ f_m(x, y, z, w) = 0 . \end{cases}$$

Problem: Find all *polynomial relations* that are **satisfied by all positive solutions** and that involves *only some of the variables* (say x and y).

This is a very hard problem! Gröbner bases give a partial solution.

The elimination theorem (see Chapter 3 in [CLO15])

Let \mathcal{G} be a Gröbner basis of $\langle f_1, \ldots, f_m \rangle$ with respect to the lexiographic ordering z > w > x > y. Then the set $\mathcal{G} \cap \mathbb{R}[x, y]$ contains the building blocks for all polynomial relations that involves only the variables x and ythat can be obtained as polynomial linear combinations of f_1, \ldots, f_m .

Note: All such relations are satisfied by all positive solutions to the system! But – there might be relations that can't be be obtained in this way!

29 / 27

Oskar Henriksson

Gröbner bases and reaction networks

< A

$$\begin{cases} x^2 - x + 1 - y^2 = 0\\ y^2 - x = 0 \end{cases}$$

September 6, 2020

< A

$$\begin{cases} x^{2} - x + 1 - y^{2} = 0\\ y^{2} - x = 0\\ \begin{cases} x^{2} - 2x + 1 = 0\\ y^{2} - x = 0 \end{cases}$$

September 6, 2020

Image: A matrix

▲ ∃ ▶ ▲ ∃ ▶ ∃ ∃ ■ 争 𝔄 𝔅

$$\begin{cases} x^{2} - x + 1 - y^{2} = 0\\ y^{2} - x = 0\\ \begin{cases} x^{2} - 2x + 1 = 0\\ y^{2} - x = 0 \end{cases}$$

September 6, 2020

$$\begin{cases} x^{2} - x + 1 - y^{2} = 0\\ y^{2} - x = 0\\ \begin{cases} x^{2} - 2x + 1 = 0\\ y^{2} - x = 0 \end{cases}$$

The relation x - 1 = 0 is not detected!

Oskar Henriksson

September 6, 2020

ELE NOR

30 / 27

$$\begin{cases} x^{2} - x + 1 - y^{2} = 0\\ y^{2} - x = 0\\ \begin{cases} x^{2} - 2x + 1 = 0\\ y^{2} - x = 0 \end{cases}$$

$$\begin{cases} x^2 - y^2 = 0\\ x^2 + y^2 - 1 = 0 \end{cases}$$

The relation x - 1 = 0 is not detected!

Oskar Henriksson

September 6, 2020

$$\begin{cases} x^{2} - x + 1 - y^{2} = 0 \\ y^{2} - x = 0 \end{cases} \qquad \begin{cases} x^{2} - y^{2} = 0 \\ x^{2} + y^{2} - 1 = 0 \\ y^{2} - x = 0 \end{cases} \qquad \begin{cases} x^{2} - y^{2} = 0 \\ 2x^{2} - 1 = 0 \end{cases}$$

The relation x - 1 = 0 is not detected!

Oskar Henriksson

September 6, 2020

ELE NOR

The relation x - 1 = 0 is not detected!

Oskar Henriksson

September 6, 2020

30 / 27

ヨト イヨト ヨヨ めない

The relation x - 1 = 0 is not detected!

$$\begin{cases} x^{2} - y^{2} = 0\\ x^{2} + y^{2} - 1 = 0\\ \begin{cases} x^{2} - y^{2} = 0\\ 2x^{2} - 1 = 0 \end{cases}$$

The relation $x - \sqrt{2} = 0$ is not detected!

Oskar Henriksson

Gröbner bases and reaction networks

September 6, 2020 30 / 27

▲ ■ ▶ ▲ ■ ▶ ■ ■ ■ 9 Q @