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1. Preliminaries

A reaction network with species {X1, . . . , Xn} is a list of formal expressions of the form
a11X1 + a21X2 + · · · + an1Xn −→ b11X1 + b21X2 + · · · + bn1Xn

...
a1rX1 + a2rX2 + · · · + anrXn −→ b1rX1 + b2rX2 + · · · + bnrXn .

Since the species do not have mathematical significance, all the relevant data of the net-
work is contained in the so-called reactant matrix A = (aij) ∈ Zn×r

≥0 and product matrix
B = (bij) ∈ Zr×n

≥0 . Here, n is the number of species of the network, and r the number of reactions.

Under the assumption of mass-action kinetics, a network given by matrices A, B ∈ Zn×r
≥0

gives rise to a tuple of parametric steady state polynomials
FA,B(κ, x) := (B − A)(κ ◦ xA) ∈ Q[κ1, . . . , κr, x1, . . . , xn]n , (1.1)

where x = (x1, . . . , xn) are considered as variables (representing the concentration of the species),
κ = (κ1, . . . , κr) are considered as parameters (often referred to as rate constants), and ◦ denotes
componentwise multiplication. For each choice of rate constants κ∗ ∈ Rr

>0, we get a tuple of
specialized steady state polynomials

FA,B,κ∗(x) := FA,B(κ∗, x) ∈ R[x1, . . . , xn]n .

Example 1.1. The reaction network
2X1 + X4 −→ 3X2 + 2X4

3X2 + 2X4 −→ 4X3
4X3 −→ 2X1 + X4

(1.2)

can be encoded by the matrices

A =


2 0 0
0 3 0
0 0 4
1 2 0

 and B =


0 0 2
3 0 0
0 4 0
2 0 1

 ,

and gives rise to the following steady state polynomials:

FA,B(κ, x) =


−2κ1x2

1x4 + 2κ3x4
3

3κ1x2
1x4 − 3κ2x3

2x2
4

4κ2x3
2x2

4 − 4κ3x4
3

κ1x2
1x4 − 2κ2x3

2x2
4 + κ3x4

3

 . (1.3)

2. Realizability

A common theme in reaction network theory is to ask questions of the following type.

Question 2.1. Given a polynomial system G ∈ R[x1, . . . , xn]n, can we find a reaction network,
encoded by matrices A, B ∈ Zn×r

≥0 for some r ∈ Z>0, and a choice of rate constants κ∗ ∈ Rr
>0

that together realize G, in the sense that G = FA,B,κ∗?
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There are many possible variations of Question 2.1 that are of interest. For instance:

• Realizability by particular classes of networks (e.g., weakly reversible ones).
• Realizability of coarser objects defined by polynomials, e.g. ideals, varieties or semialge-

braic sets.
• Realizability of whole families of polynomials (Gα)α∈A as subfamilies of families of the

form (fA,B,κ∗)κ∗∈Rr
>0

.

In addition, there are also associated questions of uniqueness and optimality.

One of the most well-known realizability results is due to Hárs and Tóth, and is often referred
to as the “Hungarian Lemma”.

Theorem 2.2 ([HT79, Thm. 3.2]). Consider a tuple of polynomials G = CxM ∈ R[x1, . . . , xn]n,
with m distinct monomials encoded as the columns of a matrix M ∈ Zn×m

≥0 , and coefficient matrix
C ∈ Rn×m. Then there exists r ∈ Z>0, A, B ∈ Zn×r

≥0 and κ∗ ∈ Rr
>0 such that G = FA,B,κ∗ if and

only if Mij > 0 whenever Cij < 0.

Proof. The “only if” direction is immediate from (1.1). The proof of the “if” direction given in
[HT79] is constructive, via Algorithm 2.3. □

Algorithm 2.3.
Input: A square polynomial system in the form of an exponent matrix M ∈ Zn×m

≥0 ,
and a coefficient matrix C ∈ Rn×m

Output: A realization in the form of matrices A, B ∈ Zn×r
≥0 for some r ∈ Z>0,

and a choice of rate constants κ∗ ∈ Rr
>0 such that CxM = FA,B,κ∗

1: Initiate empty matrices A and B, and an empty vector κ∗

2: for i ∈ [n] do
3: for j ∈ [m] do
4: if Cij ̸= 0 then
5: # Create a reaction that contributes a term CijxM∗j to the ith polynomial
6: # without affecting the other polynomials
7: Append the column M∗j to A

8: Append the column M∗j + sign(Cij)ei to B (ei denotes the ith standard basis vector)
9: Append the entry |Cij | to κ∗

10: return A, B, κ∗

The output of Algorithm 2.3 is called the canonical realization of the system G. The number
of reactions in it will simply be the sum of the number of terms in the respective polynomials.
It is worth noting that this is typically far from the only possible realization, and that other
realizations might be more economical to work with, or biologically more meaningful.

Example 2.4. The following parametric system (which describes the steady states of an
epidemiological SIR model, with X1, X2 and X3 representing susceptible, infected and recovered
individuals, respetively) satisfies the sign condition in Theorem 2.2 for any parameters β, γ ∈ R>0:

G = [−βx1x2, βx1x2 − γx2, γx2] ,

and the canonical realization is given by the following network with κ∗ = (β, β, γ, γ):

X1 + X2 −→ X2

X1 + X2 −→ 2X2
X2 −→ 0
X2 −→ X2 + X3 .
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Another (more biologically meaningful) realization is the following network with κ∗ = (β, γ):

X1 + X2 −→ 2X2
X2 −→ X3 .

Example 2.5 ([HT79, Ex. 3.1]). If we apply the algorithm to the system (1.3) with rate constants
κ̃ ∈ R3

>0, the canonical realization turns out to be a different network than (1.2), namely:

2X1 + X4 −→ X1 + X4
4X3 −→ X1 + 4X3

2X1 + X4 −→ 2X1 + X2 + X4
3X2 + 2X4 −→ 2X2 + 2X4

3X2 + 2X4 −→ 3X2 + X3 + 2X4
4X3 −→ 3X3

2X1 + X4 −→ 2X1 + 2X4
3X2 + 2X4 −→ 3X2 + X4

4X3 −→ 4X3 + X4

with the following choice of rate constants:

κ∗ = (2κ̃1, 2κ̃3, 3κ̃1, 3κ̃2, 4κ̃2, 4κ̃3, κ̃1, 2κ̃2, κ̃3) .

Example 2.6. A classical example of an unrealizable parametric system (which one might
recognize as the right-hand side of a Lorentz attractor system) is

G = [σx2 − σx1, ρx1 − x1x3 − x2, x1x2 − βx3] , (2.1)

where the second monomial in the second polynomial violates the sign condition of Theorem 2.2
for any σ, ρ, β ∈ R>0.

We now turn to the question of realizing “coarser” objects that depend on a polynomial
system, such as ideals and solution sets. The following is an almost immediate consequence of
Theorem 2.2 (see for instance [Dic16, Sect. 2] for a short discussion in this direction).

Corollary 2.7. Let h1, . . . , hs ∈ R[x1, . . . , xn] for s ≤ n be arbitrary polynomials. Then there
exists r ∈ Z>0, A, B ∈ Zn×r and κ∗ ∈ Rr

>0 such that the following equalities hold:

(i) ⟨h1, . . . , hs⟩ = ⟨FA,B,κ∗⟩ as ideals in the Laurent polynomial ring R[x±
1 , . . . , x±

n ]
(ii) V(h1, . . . , hs) ∩ (R∗)n = V(FA,B,κ∗) ∩ (R∗)n

(iii) V(h1, . . . , hs) ∩ Rn
>0 = V(FA,B,κ∗) ∩ Rn

>0.

Proof. Form a square polynomial system G = (g1, . . . , gn) ∈ R[x1, . . . , xn]n by setting

g1 = x1h1 , . . . , gs = xshs , gs+1 = 0 , . . . , gn = 0 ,

and apply Theorem 2.2 to find a realization FA,B,κ∗ = G. Part (i) then follows by noting that
⟨h1, . . . , hs⟩ = ⟨G⟩ in R[x±

1 , . . . , x±
n ], whereas parts (ii) and (iii) follow directly from (i). □

Example 2.8. The positive roots of (2.1) coincide with the positive real roots of
[σx2 − σx1, ρx1x2 − x1x2x3 − x2

2, x1x2 − βx3], and can thus be realized as V(FA,B,κ∗) ∩ R3
>0 for

the following network, with κ∗ = (σ, σ, ρ, 1, 1, 1, β):

X2 −→ X2 + X1
X1 −→ 0

X1 + X2 −→ X1 + 2X2
X1 + X2 + X3 −→ X1 + X3

2X2 −→ X2

X1 + X2 −→ X1 + X2 + X3
X3 −→ 0 .
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We end with the observation that part (ii) and (iii) of Corollary 2.7 hold also for s > n, since
we always have

VR(h1, . . . , hs) = VR(h1, . . . , h2
n + h2

n+1 + · · · + h2
s) .

We collect our conclusions in a final result.

Theorem 2.9 (The extended “Hungarian lemma”). Let h1, . . . , hs ∈ R[x1, . . . , xn] be arbitrary
polynomials for any integer s > 0. Then there exists r ∈ Z>0, A, B ∈ Zn×r and κ∗ ∈ Rr

>0 such
that the following equalities hold:

(i) V(h1, . . . , hs) ∩ (R∗)n = V(FA,B,κ∗) ∩ (R∗)n

(ii) V(h1, . . . , hs) ∩ Rn
>0 = V(FA,B,κ∗) ∩ Rn

>0.
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