REALIZABILITY IN CHEMICAL REACTION NETWORK THEORY

OSKAR HENRIKSSON

1. Preliminaries

A reaction network with species $\left\{X_{1}, \ldots, X_{n}\right\}$ is a list of formal expressions of the form

$$
\begin{aligned}
a_{11} X_{1}+a_{21} X_{2}+\cdots+a_{n 1} X_{n} & \longrightarrow b_{11} X_{1}+b_{21} X_{2}+\cdots+b_{n 1} X_{n} \\
& \vdots \\
a_{1 r} X_{1}+a_{2 r} X_{2}+\cdots+a_{n r} X_{n} & \longrightarrow b_{1 r} X_{1}+b_{2 r} X_{2}+\cdots+b_{n r} X_{n} .
\end{aligned}
$$

Since the species do not have mathematical significance, all the relevant data of the network is contained in the so-called reactant matrix $A=\left(a_{i j}\right) \in \mathbb{Z}_{\geq 0}^{n \times r}$ and product matrix $B=\left(b_{i j}\right) \in \mathbb{Z}_{\geq 0}^{r \times n}$. Here, n is the number of species of the network, and r the number of reactions.

Under the assumption of mass-action kinetics, a network given by matrices $A, B \in \mathbb{Z}_{\geq 0}^{n \times r}$ gives rise to a tuple of parametric steady state polynomials

$$
\begin{equation*}
F_{A, B}(\boldsymbol{\kappa}, \boldsymbol{x}):=(B-A)\left(\boldsymbol{\kappa} \circ \boldsymbol{x}^{A}\right) \in \mathbb{Q}\left[\kappa_{1}, \ldots, \kappa_{r}, x_{1}, \ldots, x_{n}\right]^{n}, \tag{1.1}
\end{equation*}
$$

where $\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right)$ are considered as variables (representing the concentration of the species), $\kappa=\left(\kappa_{1}, \ldots, \kappa_{r}\right)$ are considered as parameters (often referred to as rate constants), and o denotes componentwise multiplication. For each choice of rate constants $\kappa^{*} \in \mathbb{R}_{>0}^{r}$, we get a tuple of specialized steady state polynomials

$$
F_{A, B, \boldsymbol{\kappa}^{*}}(\boldsymbol{x}):=F_{A, B}\left(\boldsymbol{\kappa}^{*}, \boldsymbol{x}\right) \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]^{n} .
$$

Example 1.1. The reaction network

$$
\begin{align*}
2 X_{1}+X_{4} & \longrightarrow 3 X_{2}+2 X_{4} \\
3 X_{2}+2 X_{4} & \longrightarrow 4 X_{3} \tag{1.2}\\
4 X_{3} & \longrightarrow 2 X_{1}+X_{4}
\end{align*}
$$

can be encoded by the matrices

$$
A=\left[\begin{array}{lll}
2 & 0 & 0 \\
0 & 3 & 0 \\
0 & 0 & 4 \\
1 & 2 & 0
\end{array}\right] \quad \text { and } \quad B=\left[\begin{array}{lll}
0 & 0 & 2 \\
3 & 0 & 0 \\
0 & 4 & 0 \\
2 & 0 & 1
\end{array}\right]
$$

and gives rise to the following steady state polynomials:

$$
F_{A, B}(\boldsymbol{\kappa}, \boldsymbol{x})=\left[\begin{array}{c}
-2 \kappa_{1} x_{1}^{2} x_{4}+2 \kappa_{3} x_{3}^{4} \tag{1.3}\\
3 \kappa_{1} x_{1}^{2} x_{4}-3 \kappa_{2} x_{2}^{3} x_{4}^{2} \\
4 \kappa_{2} x_{2}^{3} x_{4}^{2}-4 \kappa_{3} x_{3}^{4} \\
\kappa_{1} x_{1}^{2} x_{4}-2 \kappa_{2} x_{2}^{3} x_{4}^{2}+\kappa_{3} x_{3}^{4}
\end{array}\right] .
$$

2. Realizability

A common theme in reaction network theory is to ask questions of the following type.
Question 2.1. Given a polynomial system $G \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]^{n}$, can we find a reaction network, encoded by matrices $A, B \in \mathbb{Z}_{\geq 0}^{n \times r}$ for some $r \in \mathbb{Z}_{>0}$, and a choice of rate constants $\boldsymbol{\kappa}^{*} \in \mathbb{R}_{>0}^{r}$ that together realize G, in the sense that $G=F_{A, B, \kappa^{*}}$?

There are many possible variations of Question 2.1 that are of interest. For instance:

- Realizability by particular classes of networks (e.g., weakly reversible ones).
- Realizability of coarser objects defined by polynomials, e.g. ideals, varieties or semialgebraic sets.
- Realizability of whole families of polynomials $\left(G_{\alpha}\right)_{\alpha \in \mathcal{A}}$ as subfamilies of families of the form $\left(f_{A, B, \kappa^{*}}\right)_{\kappa^{*} \in \mathbb{R}_{>0}^{r}}$.

In addition, there are also associated questions of uniqueness and optimality.
One of the most well-known realizability results is due to Hárs and Tóth, and is often referred to as the "Hungarian Lemma".

Theorem 2.2 ($(\boxed{H T 79}, ~ T h m .3 .2])$. Consider a tuple of polynomials $G=C \boldsymbol{x}^{M} \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]^{n}$, with m distinct monomials encoded as the columns of a matrix $M \in \mathbb{Z}_{\geq 0}^{n \times m}$, and coefficient matrix $C \in \mathbb{R}^{n \times m}$. Then there exists $r \in \mathbb{Z}_{>0}, A, B \in \mathbb{Z}_{\geq 0}^{n \times r}$ and $\boldsymbol{\kappa}^{*} \in \mathbb{R}_{>0}^{r}$ such that $G=F_{A, B, \kappa^{*}}$ if and only if $M_{i j}>0$ whenever $C_{i j}<0$.

Proof. The "only if" direction is immediate from (1.1). The proof of the "if" direction given in [HT79] is constructive, via Algorithm 2.3 .

Algorithm 2.3.

Input: A square polynomial system in the form of an exponent matrix $M \in \mathbb{Z}_{\geq 0}^{n \times m}$,
and a coefficient matrix $C \in \mathbb{R}^{n \times m}$
Output: A realization in the form of matrices $A, B \in \mathbb{Z}_{\geq 0}^{n \times r}$ for some $r \in \mathbb{Z}_{>0}$,
and a choice of rate constants $\boldsymbol{\kappa}^{*} \in \mathbb{R}_{>0}^{r}$ such that $C \boldsymbol{x}^{M}=F_{A, B, \kappa^{*}}$
Initiate empty matrices A and B, and an empty vector $\boldsymbol{\kappa}^{*}$
for $i \in[n]$ do
for $j \in[m]$ do
if $C_{i j} \neq 0$ then
\# Create a reaction that contributes a term $C_{i j} \boldsymbol{x}^{M_{* j}}$ to the ith polynomial
\# without affecting the other polynomials
Append the column $M_{* j}$ to A
Append the column $M_{* j}+\operatorname{sign}\left(C_{i j}\right) \boldsymbol{e}_{i}$ to B (\boldsymbol{e}_{i} denotes the i th standard basis vector $)$
Append the entry $\left|C_{i j}\right|$ to $\boldsymbol{\kappa}^{*}$
return A, B, κ^{*}
The output of Algorithm 2.3 is called the canonical realization of the system G. The number of reactions in it will simply be the sum of the number of terms in the respective polynomials. It is worth noting that this is typically far from the only possible realization, and that other realizations might be more economical to work with, or biologically more meaningful.

Example 2.4. The following parametric system (which describes the steady states of an epidemiological SIR model, with X_{1}, X_{2} and X_{3} representing susceptible, infected and recovered individuals, respetively) satisfies the sign condition in Theorem 2.2 for any parameters $\beta, \gamma \in \mathbb{R}_{>0}$:

$$
G=\left[-\beta x_{1} x_{2}, \beta x_{1} x_{2}-\gamma x_{2}, \gamma x_{2}\right],
$$

and the canonical realization is given by the following network with $\boldsymbol{\kappa}^{*}=(\beta, \beta, \gamma, \gamma)$:

$$
\begin{aligned}
X_{1}+X_{2} & \longrightarrow X_{2} \\
X_{1}+X_{2} & \longrightarrow 2 X_{2} \\
X_{2} & \longrightarrow 0 \\
X_{2} & \longrightarrow X_{2}+X_{3} .
\end{aligned}
$$

Another (more biologically meaningful) realization is the following network with $\boldsymbol{\kappa}^{*}=(\beta, \gamma)$:

$$
\begin{aligned}
X_{1}+X_{2} & \longrightarrow 2 X_{2} \\
X_{2} & \longrightarrow X_{3} .
\end{aligned}
$$

Example 2.5 ([HT79, Ex. 3.1]). If we apply the algorithm to the system (1.3 with rate constants $\tilde{\kappa} \in \mathbb{R}_{>0}^{3}$, the canonical realization turns out to be a different network than 1.2 , namely:

$$
\begin{aligned}
2 X_{1}+X_{4} & \longrightarrow X_{1}+X_{4} \\
4 X_{3} & \longrightarrow X_{1}+4 X_{3} \\
2 X_{1}+X_{4} & \longrightarrow 2 X_{1}+X_{2}+X_{4} \\
3 X_{2}+2 X_{4} & \longrightarrow 2 X_{2}+2 X_{4} \\
3 X_{2}+2 X_{4} & \longrightarrow 3 X_{2}+X_{3}+2 X_{4} \\
4 X_{3} & \longrightarrow 3 X_{3} \\
2 X_{1}+X_{4} & \longrightarrow 2 X_{1}+2 X_{4} \\
3 X_{2}+2 X_{4} & \longrightarrow 3 X_{2}+X_{4} \\
4 X_{3} & \longrightarrow 4 X_{3}+X_{4}
\end{aligned}
$$

with the following choice of rate constants:

$$
\boldsymbol{\kappa}^{*}=\left(2 \tilde{\kappa}_{1}, 2 \tilde{\kappa}_{3}, 3 \tilde{\kappa}_{1}, 3 \tilde{\kappa}_{2}, 4 \tilde{\kappa}_{2}, 4 \tilde{\kappa}_{3}, \tilde{\kappa}_{1}, 2 \tilde{\kappa}_{2}, \tilde{\kappa}_{3}\right) .
$$

Example 2.6. A classical example of an unrealizable parametric system (which one might recognize as the right-hand side of a Lorentz attractor system) is

$$
\begin{equation*}
G=\left[\sigma x_{2}-\sigma x_{1}, \rho x_{1}-x_{1} x_{3}-x_{2}, x_{1} x_{2}-\beta x_{3}\right] \tag{2.1}
\end{equation*}
$$

where the second monomial in the second polynomial violates the sign condition of Theorem 2.2 for any $\sigma, \rho, \beta \in \mathbb{R}_{>0}$.

We now turn to the question of realizing "coarser" objects that depend on a polynomial system, such as ideals and solution sets. The following is an almost immediate consequence of Theorem 2.2 (see for instance [Dic16, Sect. 2] for a short discussion in this direction).

Corollary 2.7. Let $h_{1}, \ldots, h_{s} \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ for $s \leq n$ be arbitrary polynomials. Then there exists $r \in \mathbb{Z}_{>0}, A, B \in \mathbb{Z}^{n \times r}$ and $\boldsymbol{\kappa}^{*} \in \mathbb{R}_{>0}^{r}$ such that the following equalities hold:
(i) $\left\langle h_{1}, \ldots, h_{s}\right\rangle=\left\langle F_{A, B, \kappa^{*}}\right\rangle$ as ideals in the Laurent polynomial ring $\mathbb{R}\left[x_{1}^{ \pm}, \ldots, x_{n}^{ \pm}\right]$
(ii) $\mathbb{V}\left(h_{1}, \ldots, h_{s}\right) \cap\left(\mathbb{R}^{*}\right)^{n}=\mathbb{V}\left(F_{A, B, \kappa^{*}}\right) \cap\left(\mathbb{R}^{*}\right)^{n}$
(iii) $\mathbb{V}\left(h_{1}, \ldots, h_{s}\right) \cap \mathbb{R}_{>0}^{n}=\mathbb{V}\left(F_{A, B, \kappa^{*}}\right) \cap \mathbb{R}_{>0}^{n}$.

Proof. Form a square polynomial system $G=\left(g_{1}, \ldots, g_{n}\right) \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]^{n}$ by setting

$$
g_{1}=x_{1} h_{1}, \quad \ldots, \quad g_{s}=x_{s} h_{s}, \quad g_{s+1}=0, \quad \ldots, \quad g_{n}=0
$$

and apply Theorem 2.2 to find a realization $F_{A, B, \kappa^{*}}=G$. Part (i) then follows by noting that $\left\langle h_{1}, \ldots, h_{s}\right\rangle=\langle G\rangle$ in $\mathbb{R}\left[x_{1}^{ \pm}, \ldots, x_{n}^{ \pm}\right]$, whereas parts (ii) and (iii) follow directly from (i).

Example 2.8. The positive roots of 2.1 coincide with the positive real roots of $\left[\sigma x_{2}-\sigma x_{1}, \rho x_{1} x_{2}-x_{1} x_{2} x_{3}-x_{2}^{2}, x_{1} x_{2}-\beta x_{3}\right]$, and can thus be realized as $\mathbb{V}\left(F_{A, B, \kappa^{*}}\right) \cap \mathbb{R}_{>0}^{3}$ for the following network, with $\boldsymbol{\kappa}^{*}=(\sigma, \sigma, \rho, 1,1,1, \beta)$:

$$
\begin{aligned}
X_{2} & \longrightarrow X_{2}+X_{1} \\
X_{1} & \longrightarrow 0 \\
X_{1}+X_{2} & \longrightarrow X_{1}+2 X_{2} \\
X_{1}+X_{2}+X_{3} & \longrightarrow X_{1}+X_{3} \\
2 X_{2} & \longrightarrow X_{2} \\
X_{1}+X_{2} & \longrightarrow X_{1}+X_{2}+X_{3} \\
X_{3} & \longrightarrow 0 .
\end{aligned}
$$

We end with the observation that part (ii) and (iii) of Corollary 2.7 hold also for $s>n$, since we always have

$$
\mathbb{V}_{\mathbb{R}}\left(h_{1}, \ldots, h_{s}\right)=\mathbb{V}_{\mathbb{R}}\left(h_{1}, \ldots, h_{n}^{2}+h_{n+1}^{2}+\cdots+h_{s}^{2}\right)
$$

We collect our conclusions in a final result.
Theorem 2.9 (The extended "Hungarian lemma"). Let $h_{1}, \ldots, h_{s} \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ be arbitrary polynomials for any integer $s>0$. Then there exists $r \in \mathbb{Z}_{>0}$, $A, B \in \mathbb{Z}^{n \times r}$ and $\boldsymbol{\kappa}^{*} \in \mathbb{R}_{>0}^{r}$ such that the following equalities hold:
(i) $\mathbb{V}\left(h_{1}, \ldots, h_{s}\right) \cap\left(\mathbb{R}^{*}\right)^{n}=\mathbb{V}\left(F_{A, B, \kappa^{*}}\right) \cap\left(\mathbb{R}^{*}\right)^{n}$
(ii) $\mathbb{V}\left(h_{1}, \ldots, h_{s}\right) \cap \mathbb{R}_{>0}^{n}=\mathbb{V}\left(F_{A, B, \kappa^{*}}\right) \cap \mathbb{R}_{>0}^{n}$.

References

[Dic16] A. Dickenstein. Biochemical reaction networks: an invitation for algebraic geometers. In Mathematical Congress of the Americas 2013, volume 656 of Contemporary Mathematics, page 65-83. American Mathematical Society, 2016. Cited on page 3 .
[HT79] V. Hárs and J. Tóth. On the inverse problem of reaction kinetics. In Colloquia Mathematica Societatis János Bolyai 30., Qualitative Theory of Differential Equations, Szeged (Hungary), pages 363-379, 1979. Cited on pages 2 and 3 .

